一般化
欧几里德几何
概率逻辑
曲率
计算机科学
欧几里得空间
双曲空间
人工智能
集合(抽象数据类型)
信息几何学
非欧几里德几何
算法
空格(标点符号)
公制(单位)
泛化误差
数学
几何学
人工神经网络
纯数学
数学分析
标量曲率
运营管理
经济
程序设计语言
操作系统
作者
Parth Chhabra,Atula Tejaswi Neerkaje,Shivam Agarwal,R. C. Sawhney,Megh Thakkar,Preslav Nakov,Sudheer Chava
标识
DOI:10.1145/3539618.3592008
摘要
Mixup is an efficient data augmentation technique, which improves generalization by interpolating random examples. While numerous approaches have been developed for Mixup in the Euclidean and in the hyperbolic space, they do not fully use the intrinsic properties of the examples, i.e., they manually set the geometry (Euclidean or hyperbolic) based on the overall dataset, which may be sub-optimal since each example may require a different geometry. We propose DynaMix, a framework that automatically selects an example-specific geometry and performs Mixup between the different geometries to improve training dynamics and generalization. Through extensive experiments in image and text modalities we show that DynaMix outperforms state-of-the-art methods over six downstream applications. We find that DynaMix is more useful in low-resource and semi-supervised settings likely because it displays a probabilistic view of the geometry.
科研通智能强力驱动
Strongly Powered by AbleSci AI