A Deep Regression Approach for Human Activity Recognition Under Partial Occlusion

人工智能 闭塞 计算机科学 卷积神经网络 回归 运动(物理) 任务(项目管理) 集合(抽象数据类型) 模式识别(心理学) 计算机视觉 人工神经网络 机器学习 数学 统计 经济 心脏病学 管理 程序设计语言 医学
作者
Ioannis Vernikos,Evaggelos Spyrou,Ioannis-Aris Kostis,Eirini Mathe,Phivos Mylonas
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (09): 2350047-2350047 被引量:12
标识
DOI:10.1142/s0129065723500478
摘要

In real-life scenarios, Human Activity Recognition (HAR) from video data is prone to occlusion of one or more body parts of the human subjects involved. Although it is common sense that the recognition of the majority of activities strongly depends on the motion of some body parts, which when occluded compromise the performance of recognition approaches, this problem is often underestimated in contemporary research works. Currently, training and evaluation is based on datasets that have been shot under laboratory (ideal) conditions, i.e. without any kind of occlusion. In this work, we propose an approach for HAR in the presence of partial occlusion, in cases wherein up to two body parts are involved. We assume that human motion is modeled using a set of 3D skeletal joints and also that occluded body parts remain occluded during the whole duration of the activity. We solve this problem using regression, performed by a novel deep Convolutional Recurrent Neural Network (CRNN). Specifically, given a partially occluded skeleton, we attempt to reconstruct the missing information regarding the motion of its occluded part(s). We evaluate our approach using four publicly available human motion datasets. Our experimental results indicate a significant increase of performance, when compared to baseline approaches, wherein networks that have been trained using only nonoccluded or both occluded and nonoccluded samples are evaluated using occluded samples. To the best of our knowledge, this is the first research work that formulates and copes with the problem of HAR under occlusion as a regression task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵白山发布了新的文献求助10
刚刚
HanFeiZi完成签到 ,获得积分10
2秒前
4秒前
在水一方应助夏侯一鸣采纳,获得500
6秒前
夏小胖发布了新的文献求助10
8秒前
9秒前
11秒前
渡花应助wuxunxun2015采纳,获得10
11秒前
多多完成签到,获得积分10
13秒前
密钥发布了新的文献求助10
13秒前
devil发布了新的文献求助10
13秒前
13秒前
小二郎应助拼搏的小白采纳,获得10
14秒前
14秒前
yitonghan完成签到,获得积分10
15秒前
CipherSage应助Jxin采纳,获得10
16秒前
LLL发布了新的文献求助10
16秒前
不要讨好十三完成签到,获得积分10
16秒前
隆咚锵发布了新的文献求助30
17秒前
聪明静柏完成签到 ,获得积分10
17秒前
18秒前
18秒前
Akim应助酷酷纹采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
Owen应助moon采纳,获得10
20秒前
aaa完成签到,获得积分10
21秒前
pphss发布了新的文献求助30
22秒前
陈陈完成签到,获得积分10
23秒前
knight0524完成签到,获得积分10
23秒前
wangmeiqiong完成签到,获得积分10
23秒前
我是老大应助XLC采纳,获得10
24秒前
DY完成签到,获得积分10
24秒前
25秒前
avaig完成签到,获得积分10
26秒前
28秒前
FashionBoy应助XR采纳,获得30
28秒前
所所应助hanzhiyuxing采纳,获得10
28秒前
guo发布了新的文献求助10
30秒前
31秒前
牛牛最棒完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632506
求助须知:如何正确求助?哪些是违规求助? 4727031
关于积分的说明 14982275
捐赠科研通 4790442
什么是DOI,文献DOI怎么找? 2558305
邀请新用户注册赠送积分活动 1518683
关于科研通互助平台的介绍 1479145