Highly efficient detection of deoxynivalenol and zearalenone in the aqueous environment based on nanoenzyme-mediated lateral flow immunoassay combined with smartphone

玉米赤霉烯酮 色谱法 检出限 免疫分析 化学 水溶液 真菌毒素 放射性检测 计算机科学 食品科学 生物 物理化学 人工智能 抗体 免疫学
作者
Weibin Li,Zedong Wang,Xinwei Wang,Cui Li,Wenyuan Huang,Zhaoyong Zhu,Zhenjiang Liu
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:11 (5): 110494-110494 被引量:8
标识
DOI:10.1016/j.jece.2023.110494
摘要

Deoxynivalenol (DON) and zearalenone (ZEN) pose a serious threat to human health, and have been frequently detected in the aqueous environment. To protect consumers from the harm of mycotoxins, a nanozyme-mediated multiplexed lateral flow immunoassay (LFIA) integrated with a smartphone was developed for rapid, highly sensitive and simultaneous quantitative detection of DON and ZEN in the aqueous environment. Highly efficient peroxidase mimicking core-shell Au@Pt nanozymes were synthesized by one-pot method, and then used as signal amplification to highly improve sensitivity of the detection, while a smartphone-based quantitative detection device could rapidly quantify results to improve the detection efficiency of the LIFA for on-site detection. After optimization, the detection time of the assay was 10 min, and the detection limits of the LIFA for DON/ZEN were 0.24/0.04 ng/mL, which were improved 416 and 150 folds compared to the conventional gold nanoparticles (GNPs)-based LFIA. Moreover, there was no obvious cross-reaction with other related mycotoxins, indicating that LFIA had a high specificity. The average recoveries of DON and ZEN from corn, wheat and three water samples were obtained from 94.3 % to 107.9 % with relative standard deviations of 0.2–7.6 %. Furthermore, the accuracy and reliability of the LIFA were evaluated with three spiked water samples, and the results presented good correlations with analytic results from the enzyme-linked immunosorbent assay (R2 =0.988 for DON, and 0.983 for ZEN). The results indicate the proposed LIFA was potentially a rapid, on-site simultaneous and highly sensitive method for DON and ZEN detection in the aqueous environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YJ完成签到,获得积分10
刚刚
wsqg123完成签到,获得积分10
刚刚
小小完成签到 ,获得积分10
3秒前
韶邑完成签到,获得积分10
3秒前
岩追研完成签到,获得积分10
4秒前
yeyuchenfeng完成签到,获得积分10
4秒前
科研通AI2S应助邢智超采纳,获得10
4秒前
5秒前
study完成签到,获得积分10
7秒前
shinen完成签到,获得积分10
9秒前
9秒前
老牛马发布了新的文献求助10
10秒前
jiboya发布了新的文献求助10
10秒前
不想喝周完成签到,获得积分10
11秒前
香蕉觅云应助积极从蕾采纳,获得10
13秒前
14秒前
杆杆完成签到 ,获得积分10
14秒前
古炮发布了新的文献求助10
15秒前
flymove完成签到,获得积分10
16秒前
木木完成签到,获得积分20
18秒前
丘比特应助竹叶青采纳,获得20
18秒前
AAA完成签到,获得积分10
18秒前
邢智超发布了新的文献求助10
19秒前
吴晓娟完成签到 ,获得积分10
20秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
20秒前
GJ完成签到,获得积分10
21秒前
锂离子完成签到,获得积分10
21秒前
22秒前
芒果完成签到 ,获得积分10
22秒前
brown完成签到,获得积分10
22秒前
knjfranklin完成签到,获得积分10
23秒前
邢智超完成签到,获得积分20
26秒前
椿iii完成签到 ,获得积分10
27秒前
聪慧芷巧发布了新的文献求助10
27秒前
ixxxy发布了新的文献求助10
27秒前
夜信完成签到,获得积分10
29秒前
笑点低的凉面完成签到,获得积分10
30秒前
32秒前
老牛马完成签到,获得积分20
33秒前
xxp完成签到 ,获得积分10
34秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061475
求助须知:如何正确求助?哪些是违规求助? 3600072
关于积分的说明 11432524
捐赠科研通 3323688
什么是DOI,文献DOI怎么找? 1827448
邀请新用户注册赠送积分活动 897931
科研通“疑难数据库(出版商)”最低求助积分说明 818728