SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network

计算机科学 人工神经网络 图形 杀伤力 合成致死 机器学习 人工智能 计算生物学 基因 理论计算机科学 生物 遗传学 DNA修复
作者
Yan Zhu,Yuhuan Zhou,Yang Liu,Xuan Wang,Junyi Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (2) 被引量:10
标识
DOI:10.1093/bioinformatics/btad015
摘要

Abstract Motivation Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. Results In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. Availability and implementation SLGNN is freely available at https://github.com/zy972014452/SLGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
七七完成签到,获得积分10
3秒前
lyn完成签到,获得积分10
4秒前
bkagyin应助蛋花花花采纳,获得10
4秒前
4秒前
锅包肉完成签到 ,获得积分10
6秒前
John完成签到,获得积分10
6秒前
852应助偷猪剑客采纳,获得10
7秒前
dyqdzh完成签到,获得积分10
8秒前
Shark完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
11秒前
1111222333发布了新的文献求助10
12秒前
xy完成签到,获得积分10
12秒前
乐观的颦完成签到,获得积分10
13秒前
Gray发布了新的文献求助10
13秒前
可口可乐发布了新的文献求助10
15秒前
拼搏绿柳完成签到,获得积分10
15秒前
17秒前
香蕉觅云应助pito采纳,获得10
17秒前
2Y_DADA完成签到,获得积分10
17秒前
淬h完成签到,获得积分10
18秒前
WSH发布了新的文献求助10
18秒前
19秒前
Gray完成签到,获得积分20
19秒前
优雅的母鸡完成签到,获得积分10
19秒前
yang完成签到,获得积分10
19秒前
Cc完成签到,获得积分10
20秒前
21秒前
烟花应助帅气老虎采纳,获得10
22秒前
24秒前
香辣脆皮坤完成签到,获得积分10
24秒前
24秒前
蛋花花花发布了新的文献求助10
26秒前
彭于晏应助WSH采纳,获得10
27秒前
情怀应助WSH采纳,获得10
27秒前
瘦瘦的枫叶完成签到 ,获得积分10
28秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728