Development of a machine learning-based radiomics signature for estimating breast cancer TME phenotypes and predicting anti-PD-1/PD-L1 immunotherapy response

无线电技术 外科肿瘤学 乳腺癌 医学 免疫疗法 表型 肿瘤科 生物标志物 癌症免疫疗法 内科学 肿瘤微环境 队列 癌症 生物 放射科 基因 生物化学
作者
Xiaorui Han,Yuan Guo,Huifen Ye,Zhihong Chen,Qingru Hu,Xinhua Wei,Zaiyi Liu,Changhong Liang
出处
期刊:Breast Cancer Research [BioMed Central]
卷期号:26 (1)
标识
DOI:10.1186/s13058-024-01776-y
摘要

Abstract Backgrounds Since breast cancer patients respond diversely to immunotherapy, there is an urgent need to explore novel biomarkers to precisely predict clinical responses and enhance therapeutic efficacy. The purpose of our present research was to construct and independently validate a biomarker of tumor microenvironment (TME) phenotypes via a machine learning-based radiomics way. The interrelationship between the biomarker, TME phenotypes and recipients’ clinical response was also revealed. Methods In this retrospective multi-cohort investigation, five separate cohorts of breast cancer patients were recruited to measure breast cancer TME phenotypes via a radiomics signature, which was constructed and validated by integrating RNA-seq data with DCE-MRI images for predicting immunotherapy response. Initially, we constructed TME phenotypes using RNA-seq of 1089 breast cancer patients in the TCGA database. Then, parallel DCE-MRI images and RNA-seq of 94 breast cancer patients obtained from TCIA were applied to develop a radiomics-based TME phenotypes signature using random forest in machine learning. The repeatability of the radiomics signature was then validated in an internal validation set. Two additional independent external validation sets were analyzed to reassess this signature. The Immune phenotype cohort ( n = 158) was divided based on CD8 cell infiltration into immune-inflamed and immune-desert phenotypes; these data were utilized to examine the relationship between the immune phenotypes and this signature. Finally, we utilized an Immunotherapy-treated cohort with 77 cases who received anti-PD-1/PD-L1 treatment to evaluate the predictive efficiency of this signature in terms of clinical outcomes. Results The TME phenotypes of breast cancer were separated into two heterogeneous clusters: Cluster A, an "immune-inflamed" cluster, containing substantial innate and adaptive immune cell infiltration, and Cluster B, an "immune-desert" cluster, with modest TME cell infiltration. We constructed a radiomics signature for the TME phenotypes ([AUC] = 0.855; 95% CI 0.777–0.932; p < 0.05) and verified it in an internal validation set (0.844; 0.606–1; p < 0.05). In the known immune phenotypes cohort, the signature can identify either immune-inflamed or immune-desert tumor (0.814; 0.717–0.911; p < 0.05). In the Immunotherapy-treated cohort, patients with objective response had higher baseline radiomics scores than those with stable or progressing disease ( p < 0.05); moreover, the radiomics signature achieved an AUC of 0.784 (0.643–0.926; p < 0.05) for predicting immunotherapy response. Conclusions Our imaging biomarker, a practicable radiomics signature, is beneficial for predicting the TME phenotypes and clinical response in anti-PD-1/PD-L1-treated breast cancer patients. It is particularly effective in identifying the "immune-desert" phenotype and may aid in its transformation into an "immune-inflamed" phenotype.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助西柚柠檬采纳,获得10
2秒前
3秒前
Orange应助乐观寄真采纳,获得10
3秒前
FashionBoy应助TheQ采纳,获得10
4秒前
科研通AI5应助典雅的黄豆采纳,获得10
5秒前
AAAAA应助彩虹糖采纳,获得10
6秒前
6秒前
6秒前
胖胖玩啊玩完成签到 ,获得积分10
6秒前
Zidawhy完成签到 ,获得积分10
7秒前
三叔完成签到,获得积分0
8秒前
8秒前
9秒前
MOON完成签到,获得积分10
9秒前
刘昊政发布了新的文献求助10
10秒前
10秒前
10秒前
Month完成签到,获得积分10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
叶诗柳发布了新的文献求助10
11秒前
Maestro_S发布了新的文献求助10
12秒前
13秒前
Month发布了新的文献求助10
13秒前
17秒前
www发布了新的文献求助10
17秒前
叶诗柳完成签到,获得积分10
17秒前
妮妮发布了新的文献求助10
19秒前
墨尘发布了新的文献求助30
19秒前
20秒前
科目三应助yangican采纳,获得10
21秒前
半糖神仙发布了新的文献求助10
21秒前
23秒前
nowfitness完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829329
求助须知:如何正确求助?哪些是违规求助? 3372001
关于积分的说明 10470217
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770830