Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer

医学 无线电技术 接收机工作特性 肺癌 逻辑回归 支持向量机 白细胞 核医学 癌症 放射科 回顾性队列研究 人工智能 肿瘤科 内科学 计算机科学
作者
Xiaoqing Zheng,Y. Ma,Yue Cui,Shishang Dong,F.X. Chang,Ding Zhu,Gang Huang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (4): e511-e523 被引量:1
标识
DOI:10.1016/j.crad.2024.01.006
摘要

Aim To explore the value of radiomics for predicting the expression of or programmed death ligand 1 (PD-L1) in non-small-cell lung cancer (NSCLC) based on multiparameter spectral computed tomography (CT) images. Materials And Methods A total of 220 patients with NSCLC were enrolled retrospectively and divided into the training (n=176) and testing (n=44) cohorts. The radiomics features were extracted from the conventional CT images, mono-energy 40 keV images, iodine density (ID) maps, Z-effective maps, and electron density maps. The logistic regression (LR) and support vector machine (SVM) algorithms were employed to build models based on radiomics signatures. The prediction abilities were qualified by the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve. Internal validation was performed on the independent testing dataset. Results The combined model for PD-L1 ≥1%, which consisted of the radiomics score (rad-score; p<0.0001), white blood cell (WBC; p=0.027) counts, and air bronchogram (p=0.003), reached the highest performance with the AUCs of 0.873 and 0.917 in the training and testing dataset, respectively, which was better than the radiomics model with the AUCs of 0.842 and 0.886. The combined model for PD-L1 ≥50%, which consisted of rad-score (p<0.0001) and WBC counts (p=0.027), achieved the highest performance in the training and testing dataset with AUCs of 0.932 and 0.903, respectively, which was better than the radiomics model with AUCs of 0.920 and 0.892, respectively. Conclusion The radiomics model based on the multiparameter images of spectral CT can predict the expression level of PD-L1 in NSCLC. The combined model can obtain higher prediction efficiency and serves as a promising method for immunotherapy selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSSstriker完成签到,获得积分10
刚刚
nana完成签到 ,获得积分10
1秒前
2秒前
2秒前
老黑发布了新的文献求助10
4秒前
kinmke完成签到,获得积分10
7秒前
脑洞疼应助Shan采纳,获得10
7秒前
鳗鱼友琴发布了新的文献求助10
7秒前
wanci应助单纯的访冬采纳,获得10
10秒前
瑾沫流年完成签到,获得积分10
10秒前
14秒前
Cheung2121完成签到,获得积分20
17秒前
18秒前
Cheung2121发布了新的文献求助30
19秒前
单纯的访冬完成签到,获得积分10
19秒前
小月986完成签到,获得积分10
20秒前
大豆cong发布了新的文献求助30
20秒前
21秒前
23秒前
舒适念真发布了新的文献求助30
25秒前
梦nv孩完成签到,获得积分10
26秒前
南宫古伦完成签到 ,获得积分10
27秒前
俭朴夜香发布了新的文献求助10
30秒前
34秒前
Tiwiiw完成签到 ,获得积分10
35秒前
NexusExplorer应助大豆cong采纳,获得10
36秒前
杨震发布了新的文献求助30
40秒前
小蘑菇应助Oliver采纳,获得10
47秒前
49秒前
52秒前
54秒前
Lucas应助m1采纳,获得10
56秒前
在水一方应助jumbaumba采纳,获得10
56秒前
疯狂的元风完成签到 ,获得积分10
56秒前
57秒前
Oliver发布了新的文献求助10
58秒前
猫咪老师给jeeya的求助进行了留言
1分钟前
香蕉觅云应助xiao金采纳,获得10
1分钟前
烟花应助103921wjk采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648