CGMA-Net: Cross-Level Guidance and Multi-Scale Aggregation Network for Polyp Segmentation

计算机科学 分割 相似性(几何) 人工智能 水准点(测量) 特征(语言学) 模式识别(心理学) 比例(比率) 卷积(计算机科学) 图像(数学) 人工神经网络 物理 哲学 量子力学 地理 语言学 大地测量学
作者
Jianwei Zheng,Yidong Yan,Liang Zhao,Xiang Pan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1424-1435 被引量:2
标识
DOI:10.1109/jbhi.2023.3345479
摘要

Colonoscopy is considered the best prevention and control method for colorectal cancer, which suffers extremely high rates of mortality and morbidity. Automated polyp segmentation of colonoscopy images is of great importance since manual polyp segmentation requires a considerable time of experienced specialists. However, due to the high similarity between polyps and mucosa, accompanied by the complex morphological features of colonic polyps, the performance of automatic polyp segmentation is still unsatisfactory. Accordingly, we propose a network, namely Cross-level Guidance and Multi-scale Aggregation (CGMA-Net), to earn a performance promotion. Specifically, three modules, including Cross-level Feature Guidance (CFG), Multi-scale Aggregation Decoder (MAD), and Details Refinement (DR), are individually proposed and synergistically assembled. With CFG, we generate spatial attention maps from the higher-level features and then multiply them with the lower-level features, highlighting the region of interest and suppressing the background information. In MAD, we parallelly use multiple dilated convolutions of different sizes to capture long-range dependencies between features. For DR, an asynchronous convolution is used along with the attention mechanism to enhance both the local details and the global information. The proposed CGMA-Net is evaluated on two benchmark datasets, i.e., CVC-ClinicDB and Kvasir-SEG, whose results demonstrate that our method not only presents state-of-the-art performance but also holds relatively fewer parameters. Concretely, we achieve the Dice Similarity Coefficient (DSC) of 91.85% and 95.73% on Kvasir-SEG and CVC-ClinicDB, respectively. The assessment of model generalization is also conducted, resulting in DSC scores of 86.25% and 86.97% on the two datasets respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后翠柏发布了新的文献求助10
2秒前
3秒前
香蕉秋寒完成签到,获得积分10
3秒前
don完成签到 ,获得积分10
4秒前
优雅含莲完成签到 ,获得积分10
5秒前
活泼的便当完成签到,获得积分10
5秒前
syangZ完成签到,获得积分10
6秒前
lizhiqian2024发布了新的文献求助10
6秒前
6秒前
zzz完成签到,获得积分10
6秒前
OAHCIL完成签到 ,获得积分10
7秒前
qqq完成签到 ,获得积分10
8秒前
匆匆赶路人完成签到 ,获得积分10
8秒前
victorchen发布了新的文献求助10
11秒前
myheng完成签到 ,获得积分10
13秒前
syangZ完成签到,获得积分10
14秒前
飞舞的青鱼完成签到,获得积分10
15秒前
在水一方应助lizhiqian2024采纳,获得10
16秒前
卿玖完成签到 ,获得积分10
16秒前
苹果惠完成签到,获得积分10
17秒前
阿桂完成签到 ,获得积分10
18秒前
Salut完成签到,获得积分10
18秒前
mike2012完成签到 ,获得积分10
19秒前
无敌幸运儿完成签到 ,获得积分10
20秒前
Leach完成签到 ,获得积分10
26秒前
专注的胡萝卜完成签到 ,获得积分10
31秒前
无限猕猴桃完成签到,获得积分10
33秒前
执意完成签到 ,获得积分10
38秒前
甜甜圈发布了新的文献求助10
39秒前
tlh完成签到 ,获得积分10
40秒前
东郭凝蝶完成签到 ,获得积分10
43秒前
zhang值完成签到,获得积分10
44秒前
AAA论文求过完成签到 ,获得积分10
45秒前
MISSIW完成签到,获得积分10
45秒前
doreen完成签到 ,获得积分10
46秒前
小彭陪小崔读个研完成签到 ,获得积分10
47秒前
传奇3应助聪慧芷巧采纳,获得10
48秒前
Zzzzzzz完成签到,获得积分10
51秒前
54秒前
Yxian完成签到,获得积分10
55秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726