Optimizing Long-Term Efficiency and Fairness in Ride-Hailing under Budget Constraint via Joint Order Dispatching and Driver Repositioning

计算机科学 约束(计算机辅助设计) 订单(交换) 预算约束 激励 约束规划 期限(时间) 公制(单位) 运筹学 人工智能 数学优化 经济 数学 微观经济学 运营管理 财务 物理 几何学 量子力学 随机规划
作者
Jiahui Sun,Haiming Jin,Zhaoxing Yang,Lü Su
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (7): 3348-3362 被引量:6
标识
DOI:10.1109/tkde.2023.3348491
摘要

Ride-hailing platforms (e.g., Uber and Didi Chuxing) have become increasingly popular in recent years. Efficiency has always been an important metric for such platforms. However, only focusing on efficiency inevitably ignores the fairness of driver incomes, which could impair the sustainability of ride-hailing systems. To optimize such two essential objectives, order dispatching and driver repositioning play an important role, as they impact not only the immediate, but also the future order-serving outcomes of drivers. In practice, the platform offers monetary incentives to drivers for completing the repositioning and has a budget for the repositioning cost. Therefore, in this paper, we aim to exploit joint order dispatching and driver repositioning to optimize both long-term efficiency and fairness in ride-hailing under the budget constraint. To this end, we propose JDRCL, a novel multi-agent reinforcement learning framework, which integrates a group-based action representation that copes with the variable action space, and a primal-dual iterative training algorithm to learn a constraint-satisfying policy that maximizes both the worst and the overall incomes of drivers. Furthermore, we prove the asymptotic convergence rate of our training algorithm. Extensive experiments based on three real-world ride-hailing order datasets show that JDRCL outperforms state-of-the-art baselines on both efficiency and fairness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助caicainuegou采纳,获得10
刚刚
英姑应助ei123采纳,获得10
3秒前
丘比特应助乐观帅哥采纳,获得10
5秒前
5秒前
6秒前
7秒前
12rcli完成签到,获得积分10
8秒前
SYLH应助晾猫人采纳,获得10
8秒前
从容芮应助晾猫人采纳,获得10
8秒前
从容芮应助晾猫人采纳,获得10
8秒前
daixan89完成签到,获得积分10
8秒前
大马哥完成签到 ,获得积分10
9秒前
10秒前
闻元杰发布了新的文献求助10
11秒前
ccccc完成签到,获得积分10
11秒前
华仔应助加减乘除采纳,获得10
11秒前
形容发布了新的文献求助10
12秒前
长情立诚完成签到,获得积分10
12秒前
还单身的惜文完成签到 ,获得积分10
12秒前
记忆超群完成签到,获得积分10
13秒前
daixan89发布了新的文献求助200
14秒前
SYLH应助008采纳,获得10
14秒前
片刻窘境发布了新的文献求助10
17秒前
科研通AI5应助DDDD采纳,获得10
17秒前
18秒前
19秒前
年轻的风应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
20秒前
Akim应助科研通管家采纳,获得10
20秒前
20秒前
所所应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
CodeCraft应助无限亦云采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864597
求助须知:如何正确求助?哪些是违规求助? 3406974
关于积分的说明 10652142
捐赠科研通 3130961
什么是DOI,文献DOI怎么找? 1726702
邀请新用户注册赠送积分活动 831961
科研通“疑难数据库(出版商)”最低求助积分说明 780064