Machine learning integration of multi-modal analytical data for distinguishing abnormal botanical drugs and its application in Guhong injection

计算机科学 数据挖掘 标准化 支持向量机 一致性(知识库) 瓶颈 传感器融合 线性判别分析 人工智能 模式识别(心理学) 嵌入式系统 操作系统
作者
Zhu Han,Jiandong Zhao,Yu Tang,Yì Wáng
出处
期刊:Chinese Medicine [BioMed Central]
卷期号:19 (1)
标识
DOI:10.1186/s13020-023-00873-y
摘要

Abstract Background Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification. Methods In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1 H NMR (q 1 HNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs. Results The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy. Conclusions A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗发布了新的文献求助10
2秒前
3秒前
Winnie完成签到,获得积分10
3秒前
4秒前
kksk发布了新的文献求助10
4秒前
四辈发布了新的文献求助10
4秒前
4秒前
6秒前
杨丙鑫发布了新的文献求助10
7秒前
李喜喜发布了新的文献求助10
7秒前
8秒前
SYLH应助高兴的紫文采纳,获得10
9秒前
1fser1完成签到,获得积分10
9秒前
DAVE应助东风采纳,获得10
10秒前
李富贵完成签到,获得积分20
10秒前
123完成签到,获得积分10
10秒前
10秒前
喜悦的怀梦关注了科研通微信公众号
11秒前
11秒前
11秒前
朴素羊完成签到 ,获得积分10
13秒前
13秒前
可cabd完成签到,获得积分10
13秒前
14秒前
14秒前
ding应助李富贵采纳,获得10
15秒前
狐妖发布了新的文献求助10
16秒前
hang完成签到,获得积分10
16秒前
17秒前
18秒前
拼搏语薇完成签到,获得积分10
19秒前
动漫大师发布了新的文献求助10
19秒前
天天快乐应助杨丙鑫采纳,获得10
20秒前
科研通AI5应助gg采纳,获得30
22秒前
23秒前
科研通AI5应助狐妖采纳,获得10
23秒前
24秒前
科研通AI5应助舒适惜寒采纳,获得10
24秒前
rhh发布了新的文献求助10
24秒前
26秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797638
求助须知:如何正确求助?哪些是违规求助? 3343077
关于积分的说明 10314637
捐赠科研通 3059803
什么是DOI,文献DOI怎么找? 1679098
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763102