Machine learning integration of multi-modal analytical data for distinguishing abnormal botanical drugs and its application in Guhong injection

计算机科学 数据挖掘 标准化 支持向量机 一致性(知识库) 瓶颈 传感器融合 线性判别分析 人工智能 模式识别(心理学) 嵌入式系统 操作系统
作者
Zhu Han,Jiandong Zhao,Yu Tang,Yì Wáng
出处
期刊:Chinese Medicine [Springer Nature]
卷期号:19 (1): 2-2 被引量:4
标识
DOI:10.1186/s13020-023-00873-y
摘要

Abstract Background Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification. Methods In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1 H NMR (q 1 HNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs. Results The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy. Conclusions A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huibaole完成签到 ,获得积分10
3秒前
4秒前
魔幻的大雁完成签到,获得积分10
4秒前
Twistzz完成签到,获得积分10
6秒前
olekravchenko发布了新的文献求助10
6秒前
zhangqq完成签到,获得积分10
6秒前
真实的白完成签到,获得积分10
8秒前
呆萌的无血完成签到,获得积分10
10秒前
沉静的蜗牛完成签到,获得积分10
14秒前
小张在努力完成签到 ,获得积分10
16秒前
彭洪凯完成签到,获得积分10
16秒前
16秒前
zwww完成签到,获得积分10
17秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
飞天毛驴发布了新的文献求助10
22秒前
冷傲的道罡完成签到,获得积分10
22秒前
fiona完成签到,获得积分0
22秒前
stt1011完成签到,获得积分10
23秒前
zzznznnn发布了新的文献求助10
27秒前
ZC完成签到,获得积分10
27秒前
28秒前
深情安青应助菜虚鲲采纳,获得10
28秒前
Joanne完成签到 ,获得积分10
29秒前
女朋友跟玩地狱火的小学生跑了完成签到,获得积分10
29秒前
狸猫不礼貌完成签到,获得积分10
30秒前
荆玉豪完成签到,获得积分10
32秒前
科研通AI6应助xsa采纳,获得10
32秒前
32秒前
真实的白发布了新的文献求助10
33秒前
学术芽完成签到,获得积分10
34秒前
35秒前
syw完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317367
求助须知:如何正确求助?哪些是违规求助? 4459844
关于积分的说明 13876619
捐赠科研通 4349993
什么是DOI,文献DOI怎么找? 2389069
邀请新用户注册赠送积分活动 1383256
关于科研通互助平台的介绍 1352647