亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Hierarchical Information in Hyperbolic Space for Self-Supervised Image Hashing

计算机科学 图像处理 人工智能 散列函数 图像(数学) 空格(标点符号) 模式识别(心理学) 数学 计算机视觉 理论计算机科学 计算机安全 操作系统
作者
Rukai Wei,Yu Liu,Jingkuan Song,Yanzhao Xie,Ke Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1768-1781 被引量:5
标识
DOI:10.1109/tip.2024.3371358
摘要

In real-world datasets, visually related images often form clusters, and these clusters can be further grouped into larger categories with more general semantics. These inherent hierarchical structures can help capture the underlying distribution of data, making it easier to learn robust hash codes that lead to better retrieval performance. However, existing methods fail to make use of this hierarchical information, which in turn prevents the accurate preservation of relationships between data points in the learned hash codes, resulting in suboptimal performance. In this paper, our focus is on applying visual hierarchical information to self-supervised hash learning and addressing three key challenges, including the construction, embedding, and exploitation of visual hierarchies. We propose a new self-supervised hashing method named Hierarchical Hyperbolic Contrastive Hashing (HHCH), making breakthroughs in three aspects. First, we propose to embed continuous hash codes into hyperbolic space for accurate semantic expression since embedding hierarchies in the hyperbolic space generates less distortion than in the hyper-sphere or Euclidean space. Second, we update the K-Means algorithm to make it run in the hyperbolic space. The proposed hierarchical hyperbolic K-Means algorithm can achieve the adaptive construction of hierarchical semantic structures. Last but not least, to exploit the hierarchical semantic structures in hyperbolic space, we propose the hierarchical contrastive learning algorithm, including hierarchical instance-wise and hierarchical prototype-wise contrastive learning. Extensive experiments on four benchmark datasets demonstrate that the proposed method outperforms state-of-the-art self-supervised hashing methods. Our codes are released at https://github.com/HUST-IDSM-AI/HHCH.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Invincible完成签到 ,获得积分10
2秒前
Alex完成签到,获得积分10
2秒前
葡萄味的果茶完成签到 ,获得积分10
2秒前
知足的憨人丫丫完成签到,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
anin应助科研通管家采纳,获得100
6秒前
mmyhn应助科研通管家采纳,获得20
6秒前
andrele应助科研通管家采纳,获得10
6秒前
852应助zrm采纳,获得10
7秒前
9秒前
乐乐应助郭大侠采纳,获得10
10秒前
11秒前
伶俐的金连完成签到 ,获得积分10
13秒前
15秒前
温柔晓刚完成签到,获得积分10
15秒前
知足的憨人*-*完成签到,获得积分10
16秒前
七慕凉发布了新的文献求助10
16秒前
17秒前
郑旭辉发布了新的文献求助10
19秒前
丘比特应助风中翠琴采纳,获得10
21秒前
研友_ZrllXL发布了新的文献求助10
22秒前
DreamRunner0410完成签到 ,获得积分10
22秒前
23秒前
靓丽紫真完成签到 ,获得积分10
25秒前
26秒前
26秒前
Sherling完成签到,获得积分10
27秒前
axlyjia发布了新的文献求助10
30秒前
zrm发布了新的文献求助10
31秒前
32秒前
33秒前
Anyemzl完成签到,获得积分10
34秒前
36秒前
Sherling发布了新的文献求助10
36秒前
lesyeuxdexx完成签到 ,获得积分10
38秒前
39秒前
孤独尔白完成签到,获得积分10
43秒前
liancheng完成签到,获得积分10
43秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824880
求助须知:如何正确求助?哪些是违规求助? 3367298
关于积分的说明 10444910
捐赠科研通 3086493
什么是DOI,文献DOI怎么找? 1698084
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848