Smart wearable insoles in industrial environments: A systematic review

可穿戴计算机 可穿戴技术 计算机科学 支持向量机 随机森林 机器学习 生产力 人工智能 工程类 嵌入式系统 经济 宏观经济学
作者
Masoud Abdollahi,Quan Zhou,Wei Yuan
出处
期刊:Applied Ergonomics [Elsevier BV]
卷期号:118: 104250-104250 被引量:4
标识
DOI:10.1016/j.apergo.2024.104250
摘要

Industrial environments present unique challenges in ensuring worker safety and optimizing productivity. The emergence of smart wearable technologies such as smart insoles has provided new opportunities to address these challenges through accurate unobtrusive monitoring and analysis of workers' activities and physical parameters. This systematic review aims to analyze the utilization of smart wearable insoles in industrial environments, focusing on their applications, employed analysis methods, and potential future directions. A comprehensive review was conducted, involving the analysis of 27 papers that utilized smart wearable insoles in industrial settings. The reviewed articles were evaluated to determine the trends in application and methodology, explore the implementation of smart insoles across different industries, and identify the prevalent machine learning models and analyzed activities in the relevant literature. The majority of the reviewed articles (67%) primarily focused on human activity recognition and gesture estimation using smart wearable insoles, aiming to enhance safety and productivity in industrial settings. Furthermore, 10% of the studies focused on fatigue identification, 10% on slip, trip, and fall hazard detection, and 13% on biomechanical analyses of workers' body joint loads. The construction industry accounted for approximately 60% of the studies conducted in industrial settings using smart insoles. The most prevalent machine learning models utilized in these studies were neural networks (48%), support vector machines (33%), k-nearest neighbors (30%), decision trees (26%), and random forests (15%). These models achieved median accuracies of 95%, 96%, 91%, 92%, and 95%, respectively. Among the analyzed activities, walking, bending with/without lifting/lowering a load, and carrying a load were the most frequently considered, with frequencies of 10, 10, and 7 out of the 27 studies, respectively. The findings of this systematic review demonstrate the growing interest in implementing smart wearable insoles in industrial environments to enhance safety and productivity. However, the effectiveness of these systems is dependent on factors such as accuracy, reliability, and generalizability of the models. The review highlights the need for further research to address these challenges and to explore the potential of these systems for use in other industrial applications such as manufacturing. Overall, this systematic review provides valuable insights for researchers, practitioners, and policymakers in the field of occupational health and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EmberEdison完成签到,获得积分10
1秒前
FashionBoy应助zzznznnn采纳,获得10
2秒前
zhk发布了新的文献求助10
2秒前
坦率的刺猬完成签到,获得积分10
2秒前
庾幻儿完成签到,获得积分10
2秒前
3秒前
ArielXu完成签到,获得积分10
3秒前
jack1完成签到,获得积分10
3秒前
威武的橘子完成签到,获得积分10
3秒前
wwzj完成签到,获得积分10
3秒前
3秒前
西贝发布了新的文献求助10
4秒前
不爱看完成签到,获得积分10
4秒前
5秒前
欢喜灭龙完成签到,获得积分10
6秒前
李昆朋完成签到,获得积分10
6秒前
舒适玉米关注了科研通微信公众号
6秒前
刻苦的秋柔完成签到,获得积分10
6秒前
6秒前
高兴的平露完成签到,获得积分10
6秒前
慕辰发布了新的文献求助10
9秒前
小烦同学发布了新的文献求助10
9秒前
9秒前
不爱看发布了新的文献求助10
9秒前
11秒前
11秒前
小二郎应助yyyyyge采纳,获得10
12秒前
12秒前
12秒前
12秒前
研友_Z6k5Q8完成签到 ,获得积分10
13秒前
13秒前
angel发布了新的文献求助10
13秒前
孤独麦片发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
Ava应助JYY采纳,获得10
14秒前
yixi发布了新的文献求助10
15秒前
完美世界应助womodou采纳,获得10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816738
求助须知:如何正确求助?哪些是违规求助? 3360137
关于积分的说明 10406832
捐赠科研通 3078164
什么是DOI,文献DOI怎么找? 1690598
邀请新用户注册赠送积分活动 813910
科研通“疑难数据库(出版商)”最低求助积分说明 767889