Cascade fusion of multi-modal and multi-source feature fusion by the attention for three-dimensional object detection

计算机科学 级联 融合 情态动词 特征(语言学) 人工智能 对象(语法) 模式识别(心理学) 目标检测 传感器融合 计算机视觉 哲学 化学 语言学 色谱法 高分子化学
作者
Fengning Yu,Jing Lian,Linhui Li,Jian Zhao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108124-108124 被引量:1
标识
DOI:10.1016/j.engappai.2024.108124
摘要

Three dimensional (3D) object detection using the camera and light detection and ranging (LiDAR) fusion model has received much attention for meeting the environmental sensing requirement in autonomous vehicles. Due to the intrinsic data difference and the uneven distribution of LiDAR data, integrating the camera and LiDAR to solve the problem of the uneven spatial distribution of LiDAR data is still challenging. This paper proposes a novel 3D detector, which decorates the point cloud voxels with the semantic features at multi-scale and fuses the multi-source features by cross-attention to improve the detection performance. Specifically, the multi-modal fusion aims to maintain the cross-modal consistency by using the frustum model to construct the correspondence between point voxels and image pixels at multi-scale. To fully exploit the geometric constraints of voxels, we developed a adaptive sampling radius module to dynamically select the sampling radius of the voxel set abstraction module based on softmax. Moreover, we propose a multi-source fusion module which utilizes the cross-attention and takes the raw point cloud’s spatial distribution as the clue to fuse the features of point clouds, bird’s eye view information and the aggregated voxels to obtain the multi-scale and multi-source fusion features. Finally, region proposal network is adopted to generate and refine the 3D bbox and class prediction based on the fusion feature and bird’s eye view feature. Extensive experiments are conducted on the two publicly available 3D object datasets proposed by Karlsruhe Institute of technology and Toyota Technological Institute (KITTI) and the nuScenes. The proposed model reaches 86.27% mean Average Precision (mAP) for car on KITTI and obtains 6.56% gains than PointPainting. Moreover, our model reaches 70.70% mAP on nuScens and improves 2.61% than Transfusion. Furthermore, comprehensive ablation experiments are conducted to validate the effects and contribution of the different components of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果烧鹅完成签到,获得积分10
刚刚
6666666666完成签到 ,获得积分10
1秒前
陈医生完成签到,获得积分10
1秒前
追寻的白安应助松19采纳,获得30
1秒前
蜡染李发布了新的文献求助10
2秒前
幸福的蜜粉完成签到,获得积分10
4秒前
一只咸鱼完成签到,获得积分10
5秒前
望北完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
8秒前
yuaner完成签到,获得积分10
10秒前
10秒前
阿托伐他汀完成签到 ,获得积分10
13秒前
yuaner发布了新的文献求助10
14秒前
Aiden发布了新的文献求助10
14秒前
lqqq完成签到 ,获得积分10
18秒前
19秒前
科研通AI5应助LSY28采纳,获得10
20秒前
22秒前
25秒前
26秒前
26秒前
26秒前
LNN完成签到,获得积分10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
赘婿应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
wlb1212123完成签到 ,获得积分10
28秒前
tt发布了新的文献求助10
30秒前
依亦然发布了新的文献求助10
30秒前
33秒前
yuyu完成签到,获得积分10
35秒前
打打应助危机的剑鬼采纳,获得10
35秒前
天天快乐应助元谷雪采纳,获得10
35秒前
伊布发布了新的文献求助10
38秒前
李嘉馨完成签到 ,获得积分10
39秒前
龍龖龘完成签到,获得积分10
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243