饱和速度
硒化物
铟
材料科学
凝聚态物理
电子迁移率
半导体
光电子学
氮化铟
饱和(图论)
电子
声子
范德瓦尔斯力
基质(水族馆)
氮化物
纳米技术
物理
漂移速度
图层(电子)
数学
硒
量子力学
组合数学
冶金
海洋学
分子
地质学
作者
Yongwook Seok,Hanbyeol Jang,YiTaek Choi,Y. Ko,Minje Kim,Heungsoon Im,Kenji Watanabe,Takashi Taniguchi,Jae Hun Seol,Sang‐Soo Chee,Junghyo Nah,Kayoung Lee
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-03-07
卷期号:18 (11): 8099-8106
被引量:2
标识
DOI:10.1021/acsnano.3c11613
摘要
Creating a high-frequency electron system demands a high saturation velocity (υsat). Herein, we report the high-field transport properties of multilayer van der Waals (vdW) indium selenide (InSe). The InSe is on a hexagonal boron nitride substrate and encapsulated by a thin, noncontinuous In layer, resulting in an impressive electron mobility reaching 2600 cm2/(V s) at room temperature. The high-mobility InSe achieves υsat exceeding 2 × 107 cm/s, which is superior to those of other gapped vdW semiconductors, and exhibits a 50–60% improvement in υsat when cooled to 80 K. The temperature dependence of υsat suggests an optical phonon energy (ℏωop) for InSe in the range of 23–27 meV, previously reported values for InSe. It is also notable that the measured υsat values exceed what is expected according to the optical phonon emission model due to weak electron–phonon scattering. The superior υsat of our InSe, despite its relatively small ℏωop, reveals its potential for high-frequency electronics, including applications to control cryogenic quantum computers in close proximity.
科研通智能强力驱动
Strongly Powered by AbleSci AI