Gray mold and anthracnose disease detection on strawberry leaves using hyperspectral imaging

高光谱成像 模具 园艺 生物 植物 遥感 地理
作者
Baohua Zhang,Yunmeng Ou,Shuwan Yu,Yuchen Liu,Ying Liu,Wei Qiu
出处
期刊:Plant Methods [BioMed Central]
卷期号:19 (1) 被引量:8
标识
DOI:10.1186/s13007-023-01123-w
摘要

Gray mold and anthracnose are the main factors affecting strawberry quality and yield. Accurate and rapid early disease identification is of great significance to achieve precise targeted spraying to avoid large-scale spread of diseases and improve strawberry yield and quality. However, the characteristics between early disease infected and healthy leaves are very similar, making the early identification of strawberry gray mold and anthracnose still a challenge.Based on hyperspectral imaging technology, this study explored the potential of combining spectral fingerprint features and vegetation indices (VIs) for early detection (24-h infected) of strawberry leaves diseases. The competitive adaptive reweighted sampling (CARS) algorithm and ReliefF algorithm were used for the extraction of spectral fingerprint features and VIs, respectively. Three machine learning models, Backpropagation Neural Network (BPNN), Support Vector Machine (SVM) and Random Forest (RF), were developed for the early identification of strawberry gray mold and anthracnose, using spectral fingerprint, VIs and their combined features as inputs respectively. The results showed that the combination of spectral fingerprint features and VIs had better recognition accuracy compared with individual features as inputs, and the accuracies of the three classifiers (BPNN, SVM and RF) were 97.78%, 94.44%, and 93.33%, respectively, which indicate that the fusion features approach proposed in this study can effectively improve the early detection performance of strawberry leaves diseases.This study provided an accurate, rapid, and nondestructive recognition of strawberry gray mold and anthracnose disease in early stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ggg采纳,获得10
刚刚
qqqyy完成签到,获得积分0
1秒前
th发布了新的文献求助10
1秒前
高高以松完成签到,获得积分10
2秒前
情怀应助奇异果采纳,获得10
3秒前
siwei发布了新的文献求助10
3秒前
3秒前
shuwang发布了新的文献求助10
4秒前
4秒前
着迷完成签到,获得积分10
5秒前
5秒前
guoza完成签到 ,获得积分10
5秒前
8秒前
8秒前
量子星尘发布了新的文献求助150
8秒前
LX发布了新的文献求助10
9秒前
10秒前
sssssss发布了新的文献求助10
10秒前
小蘑菇应助乔晶采纳,获得10
11秒前
11秒前
彭于晏应助咳炎泥马采纳,获得10
13秒前
siwei完成签到,获得积分10
13秒前
梁林林完成签到,获得积分10
14秒前
15秒前
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
科研通AI2S应助彩色小馒头采纳,获得10
20秒前
李爱国应助张志豪采纳,获得10
21秒前
22秒前
邓羽希应助wzzznh采纳,获得10
22秒前
23秒前
1177发布了新的文献求助10
23秒前
24秒前
在水一方应助hyyyyy采纳,获得10
26秒前
科研通AI6应助ismm2002采纳,获得10
26秒前
26秒前
王柯发布了新的文献求助10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4855068
求助须知:如何正确求助?哪些是违规求助? 4152195
关于积分的说明 12866857
捐赠科研通 3901757
什么是DOI,文献DOI怎么找? 2143921
邀请新用户注册赠送积分活动 1163572
关于科研通互助平台的介绍 1064089