Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold Learning

计算机科学 人工智能 嵌入 半监督学习 无监督学习 卷积神经网络 模式识别(心理学) 机器学习 监督学习 图形 图像检索 图嵌入 歧管对齐 非线性降维 人工神经网络 降维 图像(数学) 理论计算机科学
作者
Lucas Pascotti Valem,Daniel Carlos Guimarães Pedronette,Longin Jan Latecki
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2811-2826 被引量:4
标识
DOI:10.1109/tip.2023.3268868
摘要

Impressive advances in acquisition and sharing technologies have made the growth of multimedia collections and their applications almost unlimited. However, the opposite is true for the availability of labeled data, which is needed for supervised training, since such data is often expensive and time-consuming to obtain. While there is a pressing need for the development of effective retrieval and classification methods, the difficulties faced by supervised approaches highlight the relevance of methods capable of operating with few or no labeled data. In this work, we propose a novel manifold learning algorithm named Rank Flow Embedding (RFE) for unsupervised and semi-supervised scenarios. The proposed method is based on ideas recently exploited by manifold learning approaches, which include hypergraphs, Cartesian products, and connected components. The algorithm computes context-sensitive embeddings, which are refined following a rank-based processing flow, while complementary contextual information is incorporated. The generated embeddings can be exploited for more effective unsupervised retrieval or semi-supervised classification based on Graph Convolutional Networks. Experimental results were conducted on 10 different collections. Various features were considered, including the ones obtained with recent Convolutional Neural Networks (CNN) and Vision Transformer (ViT) models. High effective results demonstrate the effectiveness of the proposed method on different tasks: unsupervised image retrieval, semi-supervised classification, and person Re-ID. The results demonstrate that RFE is competitive or superior to the state-of-the-art in diverse evaluated scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luha完成签到,获得积分10
刚刚
gjx发布了新的文献求助10
1秒前
1秒前
1秒前
adovj完成签到 ,获得积分10
2秒前
鲁西西发布了新的文献求助10
2秒前
3秒前
缓冲中完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
开朗的戎完成签到,获得积分10
6秒前
李爱国应助无敌大滨州采纳,获得10
7秒前
及禾发布了新的文献求助10
7秒前
喵喵发布了新的文献求助10
7秒前
小小细胞发布了新的文献求助10
8秒前
9秒前
YHDing发布了新的文献求助10
9秒前
酷波er应助天边的云彩采纳,获得30
9秒前
小豆豆发布了新的文献求助10
10秒前
小兰花完成签到,获得积分10
11秒前
研友_LJeoa8完成签到,获得积分10
12秒前
yanyan完成签到 ,获得积分10
13秒前
rosexxxx发布了新的文献求助10
14秒前
15秒前
吴晨曦完成签到,获得积分10
16秒前
16秒前
pzh完成签到 ,获得积分10
18秒前
qin完成签到,获得积分10
18秒前
18秒前
18秒前
20秒前
珂珂发布了新的文献求助10
22秒前
25秒前
洋洋洋完成签到,获得积分10
26秒前
jx完成签到,获得积分10
27秒前
27秒前
Owen应助查丽采纳,获得10
28秒前
赘婿应助高兴绿柳采纳,获得10
30秒前
KevenDing完成签到,获得积分10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4179876
求助须知:如何正确求助?哪些是违规求助? 3715302
关于积分的说明 11712847
捐赠科研通 3396159
什么是DOI,文献DOI怎么找? 1863330
邀请新用户注册赠送积分活动 921625
科研通“疑难数据库(出版商)”最低求助积分说明 833344