Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids

转移RNA 氨基酸 计算生物学 氨酰tRNA合成酶 生物化学 校对 化学 遗传学 生物 聚合酶 核糖核酸 基因
作者
Haoran Yu,Qunfeng Zhang,Jinping Cheng,Haote Ding,Binbin Chen,Ling Jiang,Ke Liu,Shanli Ye,Lirong Yang,Jianping Wu,Gang Xu,Jianping Lin
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5258661/v1
摘要

Abstract The pyrrolysyl-tRNA synthetase (PylRS)/tRNACUA pair is one of the most widely used systems for the incorporation of noncanonical amino acids (ncAAs) into proteins at specific positions. Although directed evolution of PylRS have enabled over 300 ncAAs to be incorporated into proteins, most of the ncAA-containing proteins are expressed in a limited yield due to low activities of PylRS variants. Here, we applied machine learning (ML) to engineer the tRNA-binding domain of PylRS with a fast Fourier transform-partial least square regression (FFT-PLSR) model and three zero-shot prediction ML models. FFT-PLSR was first applied to explore a sequence space composed of pairwise combinations of 12 single mutations, and the best variant, Com1-IFRS, showed an 11-fold increase in activity compared to IFRS, a PylRS variant. The deep learning models ESM-1v, Mutcompute, and ProRefiner were then used to identify new mutation sites impacting the activity of Com1-IFRS. FFT-PLSR was used again to identify a variant, Com2-IFRS, from a sequence space containing 11520 mutations, which showed a 30-fold increase in activity. Com2-IFRS also enhanced enzyme activity against 12 other ncAAs by up to 3944.8-fold. Transplantation of the evolved mutations into 7 other PylRS-derived synthetases improved yields of proteins containing six types of ncAAs, including derivatives of Phe, Tyr, Trp, Cys, His and Lys, by up to 1149.7-fold. Molecular dynamics simulations revealed that mutations reshaped the hydrogen bond network between tRNA and protein, which increased tRNA binding affinity, shortened the reaction distance between tRNA and ncAA, and even enhanced the dynamics correlation network. This paper offers new PylRS variants that increase the utility of the orthogonal translation system and provide a machine learning framework for identifying optimized multiple-point combinatorial mutations in a vast sequence space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
CipherSage应助史雅怡采纳,获得10
2秒前
酷波er应助rocky采纳,获得10
4秒前
4秒前
FashionBoy应助木头鱼采纳,获得10
5秒前
Astraeus完成签到 ,获得积分10
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
木木应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
柏林寒冬应助科研通管家采纳,获得10
7秒前
7秒前
chengjie应助科研通管家采纳,获得20
7秒前
7秒前
GeoEye应助科研通管家采纳,获得10
7秒前
GeoEye应助科研通管家采纳,获得10
8秒前
8秒前
GeoEye应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
11秒前
Agu关闭了Agu文献求助
11秒前
sci发布了新的文献求助10
13秒前
weihuan发布了新的文献求助10
13秒前
老阎应助aqiuyuehe采纳,获得80
16秒前
Owen应助露似珍珠月似弓采纳,获得10
17秒前
艾妮吗完成签到,获得积分10
18秒前
LiShin完成签到,获得积分10
20秒前
22秒前
22秒前
22秒前
swamp完成签到,获得积分10
23秒前
23秒前
可爱的函函应助Silvia采纳,获得10
24秒前
苗觉觉完成签到,获得积分10
25秒前
huzi发布了新的文献求助10
27秒前
pengchen完成签到 ,获得积分10
28秒前
hyfwkd发布了新的文献求助30
28秒前
大模型应助wuran采纳,获得10
29秒前
咚咚完成签到,获得积分10
29秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062952
求助须知:如何正确求助?哪些是违规求助? 3601444
关于积分的说明 11437967
捐赠科研通 3324713
什么是DOI,文献DOI怎么找? 1827766
邀请新用户注册赠送积分活动 898335
科研通“疑难数据库(出版商)”最低求助积分说明 818997