Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids

转移RNA 氨基酸 计算生物学 氨酰tRNA合成酶 生物化学 校对 化学 遗传学 生物 聚合酶 核糖核酸 基因
作者
Haoran Yu,Qunfeng Zhang,Jinping Cheng,Haote Ding,Binbin Chen,Ling Jiang,Ke Liu,Shanli Ye,Lirong Yang,Jianping Wu,Gang Xu,Jianping Lin
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5258661/v1
摘要

Abstract The pyrrolysyl-tRNA synthetase (PylRS)/tRNACUA pair is one of the most widely used systems for the incorporation of noncanonical amino acids (ncAAs) into proteins at specific positions. Although directed evolution of PylRS have enabled over 300 ncAAs to be incorporated into proteins, most of the ncAA-containing proteins are expressed in a limited yield due to low activities of PylRS variants. Here, we applied machine learning (ML) to engineer the tRNA-binding domain of PylRS with a fast Fourier transform-partial least square regression (FFT-PLSR) model and three zero-shot prediction ML models. FFT-PLSR was first applied to explore a sequence space composed of pairwise combinations of 12 single mutations, and the best variant, Com1-IFRS, showed an 11-fold increase in activity compared to IFRS, a PylRS variant. The deep learning models ESM-1v, Mutcompute, and ProRefiner were then used to identify new mutation sites impacting the activity of Com1-IFRS. FFT-PLSR was used again to identify a variant, Com2-IFRS, from a sequence space containing 11520 mutations, which showed a 30-fold increase in activity. Com2-IFRS also enhanced enzyme activity against 12 other ncAAs by up to 3944.8-fold. Transplantation of the evolved mutations into 7 other PylRS-derived synthetases improved yields of proteins containing six types of ncAAs, including derivatives of Phe, Tyr, Trp, Cys, His and Lys, by up to 1149.7-fold. Molecular dynamics simulations revealed that mutations reshaped the hydrogen bond network between tRNA and protein, which increased tRNA binding affinity, shortened the reaction distance between tRNA and ncAA, and even enhanced the dynamics correlation network. This paper offers new PylRS variants that increase the utility of the orthogonal translation system and provide a machine learning framework for identifying optimized multiple-point combinatorial mutations in a vast sequence space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿弹完成签到,获得积分10
2秒前
3秒前
科研通AI5应助个性书翠采纳,获得10
3秒前
6秒前
3210592完成签到 ,获得积分10
7秒前
划水的鱼发布了新的文献求助10
10秒前
14秒前
15秒前
王富贵发布了新的文献求助10
16秒前
17秒前
追寻地坛发布了新的文献求助10
19秒前
Souliko完成签到,获得积分10
20秒前
23秒前
风趣过客发布了新的文献求助10
23秒前
李大力完成签到,获得积分10
24秒前
24秒前
lulululululu完成签到,获得积分10
25秒前
cheryl发布了新的文献求助10
26秒前
科研通AI2S应助大饼采纳,获得10
32秒前
开放舞蹈发布了新的文献求助10
37秒前
学好久完成签到 ,获得积分10
37秒前
37秒前
10000SCI完成签到,获得积分10
40秒前
深情安青应助正直远望采纳,获得10
43秒前
12wsesd完成签到 ,获得积分10
43秒前
43秒前
44秒前
丘比特应助科研通管家采纳,获得10
44秒前
44秒前
Ava应助科研通管家采纳,获得10
44秒前
ttt应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
44秒前
44秒前
ounuo发布了新的文献求助10
44秒前
JIAO完成签到,获得积分10
46秒前
Cll完成签到 ,获得积分10
46秒前
领导范儿应助Apple采纳,获得10
47秒前
kkkkk完成签到,获得积分10
48秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844663
求助须知:如何正确求助?哪些是违规求助? 3387076
关于积分的说明 10547471
捐赠科研通 3107697
什么是DOI,文献DOI怎么找? 1711944
邀请新用户注册赠送积分活动 824223
科研通“疑难数据库(出版商)”最低求助积分说明 774644