Acoustic Resolution Photoacoustic Microscopy Imaging Enhancement: Integration of Group Sparsity with Deep Denoiser Prior

计算机科学 人工智能 迭代重建 医学影像学 生物医学中的光声成像 相似性(几何) 信噪比(成像) 模式识别(心理学) 图像分辨率 计算机视觉 图像(数学) 物理 光学 电信
作者
Zhengyuan Zhang,Zuozhou Pan,Zhuoyi Lin,Arunima Sharma,Chia‐Wen Lin,Manojit Pramanik,Yuanjin Zheng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 522-537
标识
DOI:10.1109/tip.2025.3526065
摘要

Acoustic resolution photoacoustic microscopy (AR-PAM) is a novel medical imaging modality, which can be used for both structural and functional imaging in deep bio-tissue. However, the imaging resolution is degraded and structural details are lost since its dependency on acoustic focusing, which significantly constrains its scope of applications in medical and clinical scenarios. To address the above issue, model-based approaches incorporating traditional analytical prior terms have been employed, making it challenging to capture finer details of anatomical bio-structures. In this paper, we proposed an innovative prior named group sparsity prior for simultaneous reconstruction, which utilizes the non-local structural similarity between patches extracted from internal AR-PAM images. The local image details and resolution are improved while artifacts are also introduced. To mitigate the artifacts introduced by patch-based reconstruction methods, we further integrate an external image dataset as an extra information provider and consolidate the group sparsity prior with a deep denoiser prior. In this way, complementary information can be exploited to improve reconstruction results. Extensive experiments are conducted to enhance the simulated and in vivo AR-PAM imaging results. Specifically, in the simulated images, the mean peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) values have increased from 16.36 dB and 0.46 to 27.62 dB and 0.92, respectively. The in vivo reconstructed results also demonstrate the proposed method achieves superior local and global perceptual qualities, the metrics of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) have significantly increased from 10.59 and 8.61 to 30.83 and 27.54, respectively. Additionally, reconstruction fidelity is validated with the optical resolution photoacoustic microscopy (OR-PAM) data as reference image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TAN完成签到,获得积分10
刚刚
jackynl发布了新的文献求助10
1秒前
2秒前
Yola完成签到,获得积分10
2秒前
科研通AI5应助黄凯采纳,获得150
2秒前
2秒前
ding应助迅速的八宝粥采纳,获得10
3秒前
3秒前
哈哈2022完成签到,获得积分10
6秒前
walker发布了新的文献求助10
7秒前
10秒前
赵一丁完成签到,获得积分10
11秒前
12秒前
12秒前
xufund发布了新的文献求助20
13秒前
苹果追命发布了新的文献求助10
14秒前
15秒前
郑师傅发布了新的文献求助30
15秒前
16秒前
Yy杨优秀完成签到 ,获得积分10
16秒前
花花123发布了新的文献求助10
16秒前
walker完成签到,获得积分10
17秒前
WangRuize发布了新的文献求助10
18秒前
123123发布了新的文献求助10
19秒前
凝夜发布了新的文献求助10
20秒前
爆米花应助西瓜刀采纳,获得10
24秒前
上官若男应助杨震采纳,获得10
28秒前
科研通AI5应助xufund采纳,获得10
28秒前
29秒前
慎ming发布了新的文献求助30
30秒前
31秒前
33秒前
35秒前
丘比特应助迅速的八宝粥采纳,获得10
36秒前
欢呼流沙发布了新的文献求助10
36秒前
西瓜刀发布了新的文献求助10
37秒前
在水一方应助李喜喜采纳,获得10
38秒前
顾矜应助孙振亚采纳,获得10
45秒前
LynnQiu完成签到,获得积分10
45秒前
完美凝海完成签到 ,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669