Scaled asymptotic solution nets for unlabeled seepage equation solutions with variable well flow

物理 变量(数学) 流量(数学) 应用数学 机械 数学分析 数学
作者
Qian Wang,Daolun Li,Wenshu Zha,Luhang Shen,Xiang Li,Bumin Guo,Youjie Xu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1) 被引量:2
标识
DOI:10.1063/5.0249412
摘要

The seepage equation is essential for understanding fluid flow in porous media, crucial for analyzing fluid behavior in various pore structures and supporting reservoir engineering. However, solving this equation under complex conditions, such as variable well flow rates, poses significant challenges. Although physics-informed neural networks have been effective in addressing partial differential equations, they often struggle with the complexities of such physical phenomena. This paper presents an improved method using physical asymptotic solution nets combined with scaling before activation (SBA) and gradient constraints to solve the seepage equation in porous media under varying well flow rates without labeled data. The model consists of two neural networks: one that approximates the asymptotic solution of the seepage equation and another that corrects approximation errors to ensure both mathematical and physical accuracy. When the well flow rate changes, the network may fail to fully satisfy the asymptotic solution due to pressure distribution variations, resulting in sub-optimal outcomes. To address this, we incorporate gradient information into the loss function to reinforce physical constraints and utilize the SBA method to enhance the approximation. This gradient information is derived from the pressure distribution at the previous flow rate, and the SBA method regulates weight adjustments through an adjustment coefficient constrained by the loss function, preventing sub-optimal local minima during optimization. Experimental results show that our method achieves an accuracy range of 10−4 to 10−2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasmine完成签到,获得积分10
1秒前
XY完成签到,获得积分10
1秒前
马大帅完成签到,获得积分10
1秒前
云槿完成签到,获得积分10
2秒前
深情安青应助XXX采纳,获得10
2秒前
lihongchi发布了新的文献求助10
2秒前
CipherSage应助2222采纳,获得10
2秒前
SciGPT应助小冬腊月采纳,获得10
2秒前
yang发布了新的文献求助10
3秒前
3秒前
4秒前
Fyr完成签到,获得积分10
4秒前
天天快乐应助晴天采纳,获得30
4秒前
nancy_liang完成签到 ,获得积分10
4秒前
傻傻的哈密瓜完成签到,获得积分10
4秒前
搜集达人应助王珺采纳,获得10
4秒前
Magical完成签到,获得积分10
4秒前
加薪完成签到,获得积分10
4秒前
lijiajun完成签到,获得积分10
5秒前
英姑应助范心仪123455采纳,获得10
5秒前
5秒前
aaacreeper关注了科研通微信公众号
5秒前
雪梨发布了新的文献求助200
5秒前
Ms发布了新的文献求助10
5秒前
蛇從革发布了新的文献求助240
5秒前
空瓶氧气完成签到,获得积分20
6秒前
6秒前
zy关闭了zy文献求助
6秒前
迪迪迪迪迪完成签到 ,获得积分10
6秒前
Jason完成签到,获得积分10
6秒前
JamesPei应助Gandiva采纳,获得10
7秒前
hah发布了新的文献求助10
7秒前
追寻的夏波应助孙振采纳,获得10
7秒前
小白发布了新的文献求助10
7秒前
钱来完成签到,获得积分10
7秒前
yi5feng完成签到,获得积分10
8秒前
Fyr发布了新的文献求助10
8秒前
8秒前
hsa_ID完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606948
求助须知:如何正确求助?哪些是违规求助? 4691698
关于积分的说明 14870329
捐赠科研通 4712912
什么是DOI,文献DOI怎么找? 2543302
邀请新用户注册赠送积分活动 1508514
关于科研通互助平台的介绍 1472538