Engineering the Lewis Acidity of Fe Single-Atom Sites via Atomic-Level Tuning of Spatial Coordination Configuration for Enhanced Oxygen Reduction

化学 氧原子 还原(数学) 氧气 Atom(片上系统) 原子氧 路易斯酸 氧还原 无机化学 物理化学 分子 有机化学 催化作用 电化学 嵌入式系统 几何学 计算机科学 数学 电极
作者
Qingyun Qu,Yu Mao,Shufang Ji,Jiangwen Liao,Juncai Dong,Ligang Wang,Qichen Wang,Liang Xiao,Zedong Zhang,Jiarui Yang,Haijing Li,Yongfang Zhou,Ziyun Wang,Geoffrey I. N. Waterhouse,Dingsheng Wang,Yadong Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
被引量:35
标识
DOI:10.1021/jacs.4c17444
摘要

Nitrogen-doped carbon-supported Fe catalysts (Fe-N-C) with Fe-N4 active sites hold great promise for the oxygen reduction reaction (ORR). However, fine-tuning the structure of Fe-N4 active sites to enhance their performance remains a grand challenge. Herein, we report an innovative design strategy to promote the ORR activity and kinetics of Fe-N4 sites by engineering their Lewis acidity, which is achieved by tuning the spatial Fe coordination geometry. Theoretical calculations indicated that Fe1-N4SO2 sites (with an axial –SO2 group bonded to Fe) offered favorable Lewis acidity for the ORR, leading to optimized adsorption energies for the key ORR intermediates. To implement this strategy, we developed a molecular-cage-encapsulated coordination strategy to synthesize a Fe single-atom site catalyst (SAC) with Fe1-N4SO2 sites. In agreement with theory, the Fe1-N4SO2/NC catalyst demonstrated outstanding ORR performance in both alkaline (E1/2 = 0.910 V in 0.1 M KOH) and acidic media (E1/2 = 0.772 V in 0.1 M HClO4), surpassing commercial Pt/C and traditional Fe SACs with Fe1-N4 sites or planar S-coordinated Fe1-N4-S sites. Moreover, this newly developed catalyst showed great application potential in quasi-solid-state Zn–air batteries, delivering superior performance across a wide temperature range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
001完成签到 ,获得积分10
刚刚
严锦强完成签到,获得积分10
1秒前
上官若男应助jorjames采纳,获得10
1秒前
浮浮世世发布了新的文献求助10
1秒前
七七完成签到,获得积分10
2秒前
黄梦娇完成签到,获得积分10
2秒前
sunny完成签到 ,获得积分10
2秒前
3秒前
苏七完成签到,获得积分10
4秒前
烟花应助洁净的半鬼采纳,获得10
4秒前
wsq完成签到,获得积分10
5秒前
5秒前
顺利紫山完成签到,获得积分10
5秒前
cdc完成签到 ,获得积分10
6秒前
6秒前
斑斑完成签到 ,获得积分10
6秒前
kangkang完成签到,获得积分10
6秒前
7秒前
充电宝应助科研小反派采纳,获得10
7秒前
7秒前
changping应助Ann采纳,获得20
7秒前
科研人完成签到 ,获得积分10
8秒前
Ava应助初空月儿采纳,获得10
8秒前
jlk完成签到,获得积分10
8秒前
sylinmm完成签到,获得积分10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得100
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295559
求助须知:如何正确求助?哪些是违规求助? 4445074
关于积分的说明 13835332
捐赠科研通 4329472
什么是DOI,文献DOI怎么找? 2376680
邀请新用户注册赠送积分活动 1371973
关于科研通互助平台的介绍 1337270