Heart Rate and Body Temperature Relationship in Children Admitted to PICU - A Machine Learning Approach

心率 人工智能 医疗急救 计算机科学 重症监护医学 医学 内科学 血压
作者
Emilie Lu,Thanh-Dung Le,Philippe Jouvet,Rita Noumeir
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tbme.2025.3541978
摘要

Vital signs are crucial clinical measures, with body temperature (BT) and heart rate (HR) being particularly significant. While their association has been studied in adults and children, research in Pediatric Intensive Care Unit (PICU) settings remains limited despite the critical conditions of these patients. This study examines the relationship between HR and BT in children aged 0 to 18 admitted to the PICU at CHU Sainte-Justine (CHUSJ) Hospital. Machine learning (ML) techniques, including Gradient Boosting Machines (GBM) with Quantile Regression (QR), were applied to capture the relationship between HR, BT, and age, optimizing model performance through hyperparameter tuning. Analyzing data from 4006 children, we observed a consistent trend of decreasing HR with increasing age and rising HR with higher BT ranges. Linear models often underestimated HR at lower BT ranges and overestimated it at higher ranges, especially in younger age groups. The GBM model demonstrated improved accuracy and supported a user-friendly interface for HR predictions based on BT, age, and HR percentiles. Qualitative observations indicated that linear models underestimated HR at lower BT ranges and overestimated it at higher ones, particularly in younger children. These findings challenge the direct linear association assumed in prior studies. This study provides new insights into the non-linear dynamics between HR, BT, and age in critically ill children, emphasizing further research to quantify and understand these relationships. By refining predictive models and re-evaluating traditional assumptions, this work provides valuable insights for improving clinical decision-making in PICU settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
toda_erica完成签到,获得积分10
1秒前
Eton完成签到,获得积分10
1秒前
2秒前
慕青应助123采纳,获得10
2秒前
和谐的蜡烛完成签到,获得积分10
2秒前
李爱国应助灵巧一笑采纳,获得10
4秒前
iFan完成签到 ,获得积分10
6秒前
6秒前
ShishanXue完成签到 ,获得积分20
8秒前
一尘不染完成签到 ,获得积分10
8秒前
我刷的烧饼贼亮完成签到 ,获得积分10
8秒前
机智的小霸王完成签到,获得积分10
9秒前
10秒前
超帅连虎应助迷路安雁采纳,获得10
11秒前
慎独579发布了新的文献求助10
11秒前
安南完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
排骨炖豆角完成签到 ,获得积分10
17秒前
尚可完成签到 ,获得积分10
17秒前
灵巧一笑发布了新的文献求助10
17秒前
无异常完成签到,获得积分10
17秒前
17秒前
小鹿呀完成签到,获得积分10
18秒前
lq完成签到,获得积分10
19秒前
缥缈凡旋完成签到,获得积分10
20秒前
陈伟杰发布了新的文献求助10
20秒前
隐形皮卡丘完成签到,获得积分10
21秒前
853225598完成签到,获得积分10
21秒前
唯梦完成签到 ,获得积分10
21秒前
小鹿斑斑比完成签到,获得积分10
22秒前
feng发布了新的文献求助10
22秒前
及禾完成签到,获得积分10
22秒前
PhysicsXX完成签到,获得积分10
25秒前
赘婿应助西瓜刀采纳,获得10
27秒前
刘一鸣完成签到 ,获得积分10
30秒前
还原糖完成签到,获得积分10
30秒前
完美世界应助陈伟杰采纳,获得10
31秒前
31秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081381
求助须知:如何正确求助?哪些是违规求助? 3620857
关于积分的说明 11487301
捐赠科研通 3336219
什么是DOI,文献DOI怎么找? 1834056
邀请新用户注册赠送积分活动 902877
科研通“疑难数据库(出版商)”最低求助积分说明 821335