Heart Rate and Body Temperature Relationship in Children Admitted to PICU - A Machine Learning Approach

心率 人工智能 医疗急救 计算机科学 重症监护医学 医学 内科学 血压
作者
Emilie Lu,Thanh-Dung Le,Philippe Jouvet,Rita Noumeir
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tbme.2025.3541978
摘要

Vital signs are crucial clinical measures, with body temperature (BT) and heart rate (HR) being particularly significant. While their association has been studied in adults and children, research in Pediatric Intensive Care Unit (PICU) settings remains limited despite the critical conditions of these patients. This study examines the relationship between HR and BT in children aged 0 to 18 admitted to the PICU at CHU Sainte-Justine (CHUSJ) Hospital. Machine learning (ML) techniques, including Gradient Boosting Machines (GBM) with Quantile Regression (QR), were applied to capture the relationship between HR, BT, and age, optimizing model performance through hyperparameter tuning. Analyzing data from 4006 children, we observed a consistent trend of decreasing HR with increasing age and rising HR with higher BT ranges. Linear models often underestimated HR at lower BT ranges and overestimated it at higher ranges, especially in younger age groups. The GBM model demonstrated improved accuracy and supported a user-friendly interface for HR predictions based on BT, age, and HR percentiles. Qualitative observations indicated that linear models underestimated HR at lower BT ranges and overestimated it at higher ones, particularly in younger children. These findings challenge the direct linear association assumed in prior studies. This study provides new insights into the non-linear dynamics between HR, BT, and age in critically ill children, emphasizing further research to quantify and understand these relationships. By refining predictive models and re-evaluating traditional assumptions, this work provides valuable insights for improving clinical decision-making in PICU settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan完成签到,获得积分10
刚刚
1秒前
云汐完成签到,获得积分10
1秒前
wxy发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
沉静秋尽完成签到,获得积分10
4秒前
酷波er应助yimin采纳,获得10
4秒前
5秒前
老阎应助端庄谷南采纳,获得30
5秒前
渤大小mn完成签到,获得积分20
7秒前
7秒前
嗯哼发布了新的文献求助10
7秒前
mely完成签到,获得积分20
8秒前
华仔应助科研的牲口采纳,获得10
8秒前
wang发布了新的文献求助10
8秒前
斯文败类应助外向翠风采纳,获得10
8秒前
9秒前
哈哈发布了新的文献求助10
9秒前
等待映阳发布了新的文献求助10
10秒前
h3m完成签到,获得积分10
10秒前
ryl发布了新的文献求助10
10秒前
大胆易巧完成签到 ,获得积分10
10秒前
科研通AI5应助tomato039采纳,获得10
11秒前
11秒前
Hello应助wikn采纳,获得10
12秒前
12秒前
工藤新一发布了新的文献求助10
12秒前
JamesPei应助嗯哼采纳,获得10
12秒前
在水一方应助孙子豪采纳,获得10
13秒前
13秒前
十九完成签到,获得积分10
13秒前
13秒前
所所应助兀垚采纳,获得10
14秒前
蕾蕾完成签到,获得积分10
15秒前
16秒前
16秒前
tamo发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016834
求助须知:如何正确求助?哪些是违规求助? 4256757
关于积分的说明 13266467
捐赠科研通 4060854
什么是DOI,文献DOI怎么找? 2221059
邀请新用户注册赠送积分活动 1230340
关于科研通互助平台的介绍 1152898