Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease

冠状动脉疾病 心电图 心脏病学 内科学 医学 疾病 人工智能 计算机科学
作者
Chi-Hsiao Yeh,Tsung-Hsien Tsai,Chun‐Hung Chen,Yi-Ju Chou,Chun‐Tai Mao,Tzu-Pei Su,Ning‐I Yang,Chi‐Chun Lai,Chien-Tzung Chen,Huey‐Kang Sytwu,Ting‐Fen Tsai
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:27: 278-286
标识
DOI:10.1016/j.csbj.2024.12.032
摘要

An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged ≥ 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小许会更好采纳,获得10
1秒前
慢慢完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
LL完成签到,获得积分10
4秒前
令狐剑通发布了新的文献求助10
5秒前
HE完成签到,获得积分10
5秒前
rajvsvj完成签到,获得积分10
6秒前
6秒前
6秒前
万仁杰完成签到 ,获得积分10
7秒前
彭于晏应助毛毛采纳,获得10
7秒前
星月相遂完成签到,获得积分10
8秒前
8秒前
懒羊羊发布了新的文献求助10
9秒前
11秒前
qiulong发布了新的文献求助10
11秒前
务实青筠发布了新的文献求助10
13秒前
璐宝完成签到,获得积分10
13秒前
14秒前
善学以致用应助张欣童666采纳,获得10
14秒前
酷波er应助小王同学采纳,获得10
15秒前
16秒前
吟诵月光完成签到,获得积分10
17秒前
17秒前
MRM发布了新的文献求助10
19秒前
1234完成签到,获得积分10
20秒前
动漫大师发布了新的文献求助10
21秒前
21秒前
希望天下0贩的0应助jify采纳,获得10
21秒前
上官若男应助jify采纳,获得10
21秒前
FelixChen应助yueyue采纳,获得10
22秒前
好运绵绵完成签到 ,获得积分10
24秒前
123完成签到,获得积分10
27秒前
27秒前
Adeline发布了新的文献求助10
27秒前
令狐剑通完成签到,获得积分10
27秒前
28秒前
29秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451