Impact of Scanner Manufacturer, Endorectal Coil Use, and Clinical Variables on Deep Learning-assisted Prostate Cancer Classification Using Multiparametric MRI

医学 前列腺癌 扫描仪 人工智能 前列腺 深度学习 医学物理学 接收机工作特性 机器学习 计算机科学 放射科 核医学 癌症 内科学
作者
José Guilherme de Almeida,Nuno M. Rodrigues,Ana Sofia Castro Verde,Ana Mascarenhas Gaivão,Carlos Bilreiro,Inês Santiago,Joana Ip,Sara Belião,Celso Matos,Sara Silva,Manolis Tsiknakis,Kostas Marias,Daniele Regge,Nikolaos Papanikolaou
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.230555
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To assess the impact of scanner manufacturer and scan protocol on the performance of deep learning models to classify prostate cancer (PCa) aggressiveness on biparametric MRI (bpMRI). Materials and Methods In this retrospective study, 5,478 cases from ProstateNet, a PCa bpMRI dataset with examinations from 13 centers, were used to develop five deep learning (DL) models to predict PCa aggressiveness with minimal lesion information and test how using data from different subgroups—scanner manufacturers and endorectal coil (ERC) use (Siemens, Philips, GE with and without ERC and the full dataset)—impacts model performance. Performance was assessed using the area under the receiver operating characteristic curve (AUC). The impact of clinical features (age, prostate-specific antigen level, Prostate Imaging Reporting and Data System [PI-RADS] score) on model performance was also evaluated. Results DL models were trained on 4,328 bpMRI cases, and the best model achieved AUC = 0.73 when trained and tested using data from all manufacturers. Hold-out test set performance was higher when models trained with data from a manufacturer were tested on the same manufacturer (within-and between-manufacturer AUC differences of 0.05 on average, P < .001). The addition of clinical features did not improve performance ( P = .24). Learning curve analyses showed that performance remained stable as training data increased. Analysis of DL features showed that scanner manufacturer and scan protocol heavily influenced feature distributions. Conclusion In automated classification of PCa aggressiveness using bpMRI data, scanner manufacturer and endorectal coil use had a major impact on DL model performance and features. Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜡染李发布了新的文献求助10
刚刚
幸福的蜜粉完成签到,获得积分10
2秒前
一只咸鱼完成签到,获得积分10
3秒前
望北完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
6秒前
yuaner完成签到,获得积分10
8秒前
8秒前
阿托伐他汀完成签到 ,获得积分10
11秒前
yuaner发布了新的文献求助10
12秒前
Aiden发布了新的文献求助10
12秒前
lqqq完成签到 ,获得积分10
16秒前
17秒前
科研通AI5应助LSY28采纳,获得10
18秒前
20秒前
23秒前
24秒前
24秒前
24秒前
LNN完成签到,获得积分10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
wlb1212123完成签到 ,获得积分10
26秒前
tt发布了新的文献求助10
28秒前
依亦然发布了新的文献求助10
28秒前
31秒前
yuyu完成签到,获得积分10
33秒前
打打应助危机的剑鬼采纳,获得10
33秒前
天天快乐应助元谷雪采纳,获得10
33秒前
伊布发布了新的文献求助10
36秒前
李嘉馨完成签到 ,获得积分10
37秒前
龍龖龘完成签到,获得积分10
38秒前
yank0452完成签到,获得积分20
38秒前
笨笨芯发布了新的文献求助10
38秒前
maox1aoxin应助Heaven采纳,获得30
39秒前
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243