Noninvasive Blood Glucose Monitoring Using Spatiotemporal ECG and PPG Feature Fusion and Weight-Based Choquet Integral Multimodel Approach

Choquet积分 模式识别(心理学) 人工智能 计算机科学 融合 连续血糖监测 特征(语言学) 医学 内科学 胰岛素 模糊逻辑 语言学 哲学 血糖性
作者
Jingzhen Li,Jingjing Ma,Olatunji Mumini Omisore,Yuhang Liu,Huajie Tang,Pengfei Ao,Yan Yan,Lei Wang,Zedong Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14491-14505 被引量:32
标识
DOI:10.1109/tnnls.2023.3279383
摘要

change of blood glucose (BG) level stimulates the autonomic nervous system leading to variation in both human's electrocardiogram (ECG) and photoplethysmogram (PPG). In this article, we aimed to construct a novel multimodal framework based on ECG and PPG signal fusion to establish a universal BG monitoring model. This is proposed as a spatiotemporal decision fusion strategy that uses weight-based Choquet integral for BG monitoring. Specifically, the multimodal framework performs three-level fusion. First, ECG and PPG signals are collected and coupled into different pools. Second, the temporal statistical features and spatial morphological features in the ECG and PPG signals are extracted through numerical analysis and residual networks, respectively. Furthermore, the suitable temporal statistical features are determined with three feature selection techniques, and the spatial morphological features are compressed by deep neural networks (DNNs). Lastly, weight-based Choquet integral multimodel fusion is integrated for coupling different BG monitoring algorithms based on the temporal statistical features and spatial morphological features. To verify the feasibility of the model, a total of 103 days of ECG and PPG signals encompassing 21 participants were collected in this article. The BG levels of participants ranged between 2.2 and 21.8 mmol/L. The results obtained show that the proposed model has excellent BG monitoring performance with a root-mean-square error (RMSE) of 1.49 mmol/L, mean absolute relative difference (MARD) of 13.42%, and Zone A + B of 99.49% in tenfold cross-validation. Therefore, we conclude that the proposed fusion approach for BG monitoring has potentials in practical applications of diabetes management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欻欻欻完成签到,获得积分10
2秒前
英俊的铭应助积极山雁采纳,获得10
3秒前
饱满含玉完成签到,获得积分10
3秒前
摆渡人发布了新的文献求助10
4秒前
Aha完成签到 ,获得积分10
6秒前
6秒前
靓丽战斗机完成签到 ,获得积分10
6秒前
程大大大教授完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
wlnhyF完成签到,获得积分10
7秒前
DreamLover完成签到,获得积分10
7秒前
8秒前
鄂浩轩完成签到,获得积分20
9秒前
风中访冬发布了新的文献求助10
10秒前
可爱的函函应助诚心仰采纳,获得10
11秒前
11秒前
小糊涂仙完成签到,获得积分10
11秒前
12秒前
研友_VZG7GZ应助萧然采纳,获得10
13秒前
13秒前
球状闪电完成签到,获得积分10
14秒前
15秒前
伯赏芷烟发布了新的文献求助10
15秒前
Sano完成签到 ,获得积分10
16秒前
科研通AI6应助nakl采纳,获得10
17秒前
英姑应助嘻嘻嘻采纳,获得10
17秒前
桃子发布了新的文献求助10
17秒前
17秒前
居居侠完成签到 ,获得积分10
17秒前
饲养员完成签到,获得积分10
17秒前
NiL完成签到,获得积分10
17秒前
Li完成签到,获得积分10
18秒前
wanci应助搞不好你们采纳,获得10
18秒前
19秒前
YSL发布了新的文献求助10
19秒前
劉浏琉完成签到,获得积分10
20秒前
hulala发布了新的文献求助60
20秒前
20秒前
轻松棉花糖完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539445
求助须知:如何正确求助?哪些是违规求助? 4626188
关于积分的说明 14598305
捐赠科研通 4567104
什么是DOI,文献DOI怎么找? 2503781
邀请新用户注册赠送积分活动 1481606
关于科研通互助平台的介绍 1453214