Prediction of axillary lymph node metastasis in breast cancer based on MRI: A novel domain adaptative radiomics pipeline for multicenter studies

作者
Yu‐Ting Cheng,Peipei Lu,Weixia Tang,Xinyun Zhang,Linjia Zhou,Zhaoheng Huang,Xinyu Tang,Liangchen Pei,Zihan Li,Saikit Lam,Ge Ren,Bing Li,Yuanpeng Zhang,Meihong Sheng,Jing Cai
出处
期刊:Medical Physics [Wiley]
卷期号:52 (11): e70122-e70122
标识
DOI:10.1002/mp.70122
摘要

Abstract Background Breast cancer (BC) is the most common type of cancer among women. Axillary lymph node metastasis (ALNM) is strongly correlated with distant metastasis, recurrence, and overall survival rates in BC. Therefore, accurate detection of ALNM holds valuable implications for patient prognosis and treatment plan selection. Purpose The objective of this study is to develop a novel domain adaptative radiomics pipeline based on domain adaptation (DA) to predict ALNM based on multi‐parametric magnetic resonance imaging (MRI) for multicenter studies. Methods 396 BC lesions collected from 391 patients at the first three centers were used as source domain data for model training and internal validation. 105 BC lesions collected from 105 patients at the fourth center were used as target domain data for model external validation. Each BC lesion was scanned with eight MRI sequences, including T2‐weighted, non‐fat‐saturated T1‐weighted and dynamic contrast‐enhanced sequences (phases 0–5). From each MRI sequence, 1648 radiomics features were extracted, resulting in a total of 13184 features extracted from each lesion. Variance threshold, the max‐relevance and min‐redundancy (mRMR), and the least absolute shrinkage and selection operator (LASSO) were employed for feature selection. Then a classifier based on balanced distribution adaptation (BDA) was developed for ALNM prediction. Unlike traditional radiomics models, the BDA classifier was designed to reduce data distribution differences across the three centers in the source domain by minimizing maximum mean discrepancy (MMD). The design of the BDA classifier is based on the assumption that the average distribution difference between the three centers in the source domain is similar to the distribution difference between the target domain data and the source domain data. Thus, when the BDA classifier is externally validated in the target domain, we can expect to achieve good predictive performance. The area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI) was used to evaluate the predictive performance of the domain adaptative radiomics pipeline in the external validation cohort. To highlight the effectiveness of our proposed pipeline, the traditional radiomics pipeline with six machine learning models (support vector machine (SVM), k‐nearest neighbor (KNN), random forest (RF), decision tree (DT), extreme gradient boosting (XGBoost), linear discriminant analysis (LDA)) was also trained. The traditional radiomics pipeline with six models was compared with the domain adaptative radiomics pipeline in terms of AUC. Results After feature selection, 12 radiomics features were selected for the following modeling tasks. The external validation of the domain adaptative radiomics pipeline outperformed the other models, with an AUC of 0.781 (95%CI: 0.692–0.870). The best‐performing RF model among the six traditional radiomics models demonstrated an AUC of only 0.700 (95%CI: 0.605–0.795). The p ‐value for the comparison between BDA and RF model was 0.048. Conclusion Compared with the traditional radiomics pipeline, the proposed domain adaptative radiomics pipeline based on multi‐parametric MRI achieved better performance for ALNM prediction in this multicenter study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫兰特完成签到 ,获得积分10
1秒前
1秒前
gzl发布了新的文献求助20
1秒前
程子完成签到,获得积分10
1秒前
张志超发布了新的文献求助10
1秒前
2秒前
杜大帅完成签到,获得积分10
2秒前
自然的樱桃完成签到,获得积分10
2秒前
擦撒擦擦完成签到,获得积分10
2秒前
威武鸽子完成签到,获得积分10
3秒前
4秒前
5秒前
王王王王完成签到,获得积分10
5秒前
小初发布了新的文献求助10
6秒前
jjjj完成签到,获得积分20
7秒前
xiaoxiao晓完成签到,获得积分10
7秒前
半日闲完成签到,获得积分10
7秒前
Milou发布了新的文献求助10
7秒前
7秒前
7秒前
舒适采柳发布了新的文献求助10
7秒前
三三四完成签到,获得积分10
7秒前
鱼蛋发布了新的文献求助10
8秒前
zhzhzh发布了新的文献求助30
8秒前
wanci应助lee采纳,获得10
8秒前
韩麒嘉发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
227发布了新的文献求助20
9秒前
9秒前
orixero应助yang采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
鱼鱼鱼完成签到,获得积分10
10秒前
轻歌水越发布了新的文献求助30
10秒前
沉默的便当完成签到,获得积分10
11秒前
今后应助multi采纳,获得10
12秒前
森屿海港完成签到,获得积分10
12秒前
歌于心发布了新的文献求助20
12秒前
orixero应助小初采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608560
求助须知:如何正确求助?哪些是违规求助? 4693225
关于积分的说明 14877335
捐赠科研通 4717884
什么是DOI,文献DOI怎么找? 2544255
邀请新用户注册赠送积分活动 1509400
关于科研通互助平台的介绍 1472836