GSAL: Geometric structure adversarial learning for robust medical image segmentation

分割 人工智能 计算机科学 边界(拓扑) 模式识别(心理学) 计算机视觉 图像分割 尺度空间分割 判别式 数学 数学分析
作者
Kun Wang,Xiaohong Zhang,Yuting Lu,Wei Zhang,Sheng Huang,Dan Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:140: 109596-109596 被引量:9
标识
DOI:10.1016/j.patcog.2023.109596
摘要

Automatic medical image segmentation plays a crucial role in clinical diagnosis and treatment. However, it is still a challenging task due to the complex interior characteristics (e.g., inconsistent intensity, low contrast, texture heterogeneity) and ambiguous external boundary structures. In this paper, we introduce a novel geometric structure learning mechanism (GSLM) to overcome the limitations of existing segmentation models that lack learning "focus, path, and difficulty." The geometric structure in this mechanism is jointly characterized by the skeleton-like structure extracted by the mask distance transform (MDT) and the boundary structure extracted by the mask distance inverse transform (MDIT). Among them, the skeleton-like and boundary pay attention to the trend of interior characteristics consistency and external structure continuity, respectively. With this idea, we design GSAL, a novel end-to-end geometric structure adversarial learning for robust medical image segmentation. GSAL has four components: a geometric structure generator, which yields the geometric structure to learn the most discriminative features that preserve interior characteristics consistency and external boundary structure continuity, skeleton-like and boundary structure discriminators, which enhance and correct the characterization of internal and external geometry to mutually promote the capture of global contextual dependencies, and a geometric structure fusion sub-network, which fuses the two complementary and refined skeleton-like and boundary structures to generate the high-quality segmentation results. The proposed approach has been successfully applied to three different challenging medical image segmentation tasks, including polyp segmentation, COVID-19 lung infection segmentation, and lung nodule segmentation. Extensive experimental results demonstrate that the proposed GSAL achieves favorably against most state-of-the-art methods under different evaluation metrics. The code is available at: https://github.com/DLWK/GSAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助涛ss采纳,获得10
刚刚
刚刚
刚刚
刚刚
古离完成签到,获得积分10
1秒前
YYJ完成签到,获得积分10
1秒前
1秒前
大个应助xin采纳,获得10
1秒前
1秒前
2秒前
2秒前
tangtang完成签到 ,获得积分10
2秒前
cx发布了新的文献求助20
2秒前
999发布了新的文献求助10
2秒前
3秒前
上官若男应助清爽访曼采纳,获得10
3秒前
不倦应助哈哈哈采纳,获得10
4秒前
期年之后发布了新的文献求助10
4秒前
项烙完成签到,获得积分10
5秒前
5秒前
无私路人发布了新的文献求助10
5秒前
bingchem发布了新的文献求助30
5秒前
5秒前
自信晟睿发布了新的文献求助10
5秒前
5秒前
浮晨发布了新的文献求助10
6秒前
GQ完成签到,获得积分10
6秒前
斯文曲奇发布了新的文献求助10
6秒前
SHY发布了新的文献求助10
6秒前
mmyhn应助Qinjichao采纳,获得20
6秒前
科研通AI5应助有人喜欢蓝采纳,获得10
6秒前
Deeki完成签到,获得积分10
6秒前
逢考必过完成签到,获得积分10
7秒前
7秒前
隐形曼青应助杨。。采纳,获得10
8秒前
月半完成签到,获得积分10
8秒前
8秒前
Yuqinglin发布了新的文献求助10
9秒前
7Hours发布了新的文献求助10
9秒前
阳光冬菱完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664