GSAL: Geometric structure adversarial learning for robust medical image segmentation

分割 人工智能 计算机科学 边界(拓扑) 模式识别(心理学) 计算机视觉 图像分割 尺度空间分割 判别式 数学 数学分析
作者
Kun Wang,Xiaohong Zhang,Yuting Lu,Wei Zhang,Sheng Huang,Dan Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:140: 109596-109596 被引量:9
标识
DOI:10.1016/j.patcog.2023.109596
摘要

Automatic medical image segmentation plays a crucial role in clinical diagnosis and treatment. However, it is still a challenging task due to the complex interior characteristics (e.g., inconsistent intensity, low contrast, texture heterogeneity) and ambiguous external boundary structures. In this paper, we introduce a novel geometric structure learning mechanism (GSLM) to overcome the limitations of existing segmentation models that lack learning "focus, path, and difficulty." The geometric structure in this mechanism is jointly characterized by the skeleton-like structure extracted by the mask distance transform (MDT) and the boundary structure extracted by the mask distance inverse transform (MDIT). Among them, the skeleton-like and boundary pay attention to the trend of interior characteristics consistency and external structure continuity, respectively. With this idea, we design GSAL, a novel end-to-end geometric structure adversarial learning for robust medical image segmentation. GSAL has four components: a geometric structure generator, which yields the geometric structure to learn the most discriminative features that preserve interior characteristics consistency and external boundary structure continuity, skeleton-like and boundary structure discriminators, which enhance and correct the characterization of internal and external geometry to mutually promote the capture of global contextual dependencies, and a geometric structure fusion sub-network, which fuses the two complementary and refined skeleton-like and boundary structures to generate the high-quality segmentation results. The proposed approach has been successfully applied to three different challenging medical image segmentation tasks, including polyp segmentation, COVID-19 lung infection segmentation, and lung nodule segmentation. Extensive experimental results demonstrate that the proposed GSAL achieves favorably against most state-of-the-art methods under different evaluation metrics. The code is available at: https://github.com/DLWK/GSAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木棉发布了新的文献求助10
1秒前
1秒前
1秒前
摇摇摇发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
科研通AI2S应助祁俣采纳,获得20
1秒前
能干的山灵完成签到 ,获得积分10
2秒前
2秒前
顾矜应助smmu008采纳,获得30
4秒前
4秒前
5秒前
桃子发布了新的文献求助10
5秒前
科研通AI5应助haning采纳,获得10
5秒前
5秒前
Sailzyf完成签到,获得积分10
5秒前
7秒前
7秒前
所所应助Winky采纳,获得10
7秒前
汉堡包应助小丸子采纳,获得10
8秒前
WMT发布了新的文献求助10
9秒前
昭玥应助yun采纳,获得10
9秒前
9秒前
科研通AI5应助吉吉采纳,获得10
10秒前
欢呼傲云完成签到,获得积分10
10秒前
科研通AI5应助桃子采纳,获得10
11秒前
Mira完成签到,获得积分10
11秒前
Wdj821722发布了新的文献求助20
11秒前
11秒前
足球发布了新的文献求助10
11秒前
11秒前
lemon发布了新的文献求助20
12秒前
我一定会毕业的完成签到,获得积分10
13秒前
13秒前
欢呼傲云发布了新的文献求助10
14秒前
Jasper应助灰灰采纳,获得10
15秒前
16秒前
zyt发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794261
求助须知:如何正确求助?哪些是违规求助? 3339153
关于积分的说明 10294350
捐赠科研通 3055765
什么是DOI,文献DOI怎么找? 1676792
邀请新用户注册赠送积分活动 804745
科研通“疑难数据库(出版商)”最低求助积分说明 762098