In Situ Surface Reaction for the Preparation of High-Performance Li-Rich Mn-Based Cathode Materials with Integrated Surface Functionalization

材料科学 表面改性 原位 阴极 曲面(拓扑) 纳米技术 化学工程 物理化学 有机化学 化学 几何学 数学 工程类
作者
Zihao Su,Zhihao Guo,Haoyu Xie,Meizhen Qu,Gongchang Peng,Hao Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (30): 39447-39459 被引量:7
标识
DOI:10.1021/acsami.4c08440
摘要

Li-rich Mn-based cathode materials (LLOs) are often faced with problems such as low initial Coulombic efficiency (ICE), limited rate performance, voltage decay, and structural instability. Addressing these problems with a single approach is challenging. To overcome these limitations, we developed an LLO with surface functionalization using a simple fabrication method. This two-step process involved a liquid-stage NaBF4 treatment followed by an in situ chemical reaction during sintering. This reaction led to the creation of oxygen vacancies (OV), spinel structures, and doping with Na at the Li site, B at the tetrahedral interstitial spaces of O in both the transition-metal (TM) layer and Li layers as well as the octahedral interstices in the TM layer, and F at the O site. We have carried out a thorough study and employed density functional theory calculations to reveal the hidden mechanisms. The treatment not only increases the electrical conductivity but also changes the oxygen charge environment and inhibits lattice oxygen activity. Surprisingly, the B-O bond is so strong that it prevents the migration of TM within the tetrahedral interstitial spaces of O in both the TM and Li layers, hence stabilizing its structure. This bonding interaction strengthens the transition of the TM 3d and O 2p states to lower energy levels, thus causing an increase in the redox potentials. Hence, a rise in the operating voltage occurs. Of special importance, this therapy dramatically increases the ICE to 90.29% and keeps a specified capacity of 203.3 mAh/g after 100 cycles at 1C, which is an excellent capacity retention of 89.94%. This study introduces ideas and methods to tackle the challenges associated with LLOs in batteries. It also provides compelling evidence for the development of high-energy-density Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小冰糖完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
呼安完成签到,获得积分10
1秒前
爱笑凡白发布了新的文献求助10
2秒前
2秒前
2秒前
can858完成签到,获得积分10
3秒前
科研通AI6应助王木木采纳,获得10
3秒前
可靠小懒虫完成签到,获得积分10
4秒前
甜菜完成签到,获得积分10
5秒前
6秒前
WY完成签到 ,获得积分10
6秒前
嘻嘻发布了新的文献求助10
7秒前
7秒前
蓝天发布了新的文献求助10
8秒前
78888发布了新的文献求助10
8秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
imp发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得20
9秒前
能HJY完成签到,获得积分10
9秒前
七七完成签到,获得积分10
9秒前
林夏应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
林夏应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
11秒前
脑洞疼应助小小夕采纳,获得10
11秒前
pny发布了新的文献求助10
11秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642700
求助须知:如何正确求助?哪些是违规求助? 4759529
关于积分的说明 15018532
捐赠科研通 4801206
什么是DOI,文献DOI怎么找? 2566533
邀请新用户注册赠送积分活动 1524546
关于科研通互助平台的介绍 1484071