Ice Phase Classification Made Easy with Score-Based Denoising

计算机科学 人工智能 机器学习 数据挖掘 模式识别(心理学) 算法
作者
Hong Sun,Sébastien Hamel,Tim Hsu,Babak Sadigh,Vincenzo Lordi,Fei Zhou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (16): 6369-6376
标识
DOI:10.1021/acs.jcim.4c00822
摘要

Accurate identification of ice phases is essential for understanding various physicochemical phenomena. However, such classification for structures simulated with molecular dynamics is complicated by the complex symmetries of ice polymorphs and thermal fluctuations. For this purpose, both traditional order parameters and data-driven machine learning approaches have been employed, but they often rely on expert intuition, specific geometric information, or large training data sets. In this work, we present an unsupervised phase classification framework that combines a score-based denoiser model with a subsequent model-free classification method to accurately identify ice phases. The denoiser model is trained on perturbed synthetic data of ideal reference structures, eliminating the need for large data sets and labeling efforts. The classification step utilizes the smooth overlap of atomic position (SOAP) descriptors as the atomic fingerprint, ensuring Euclidean symmetries and transferability to various structural systems. Our approach achieves a remarkable 100% accuracy in distinguishing ice phases of test trajectories using only seven ideal reference structures of ice phases as model inputs. This demonstrates the generalizability of the score-based denoiser model in facilitating phase identification for complex molecular systems. The proposed classification strategy can be broadly applied to investigate structural evolution and phase identification for a wide range of materials, offering new insights into the fundamental understanding of water and other complex systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
特别会说话完成签到,获得积分20
1秒前
加百莉发布了新的文献求助10
3秒前
Ava应助活力小笼包采纳,获得10
5秒前
Merciful发布了新的文献求助10
6秒前
qianhuxinyu完成签到,获得积分10
6秒前
香蕉觅云应助不能吃了采纳,获得10
8秒前
9秒前
9秒前
haifang完成签到,获得积分10
12秒前
乐观的颦发布了新的文献求助10
12秒前
虚心的芝麻完成签到,获得积分10
13秒前
14秒前
科科通通完成签到,获得积分10
17秒前
alho完成签到 ,获得积分10
17秒前
18秒前
耍酷皮皮虾完成签到,获得积分10
20秒前
21秒前
23秒前
面团发布了新的文献求助10
23秒前
汉堡包应助激昂的梦山采纳,获得10
25秒前
26秒前
chen完成签到,获得积分10
26秒前
Bismarck发布了新的文献求助10
29秒前
32秒前
test_20251231完成签到,获得积分10
38秒前
杨江华发布了新的文献求助10
38秒前
SciGPT应助激昂的梦山采纳,获得10
39秒前
WSYang完成签到,获得积分10
41秒前
咖啡茶叶豆完成签到,获得积分10
44秒前
旺旺哥哥完成签到,获得积分10
44秒前
动听雨梅发布了新的文献求助30
47秒前
50秒前
李爱国应助QinQin采纳,获得10
52秒前
sy1639完成签到,获得积分10
53秒前
53秒前
59秒前
张健完成签到 ,获得积分10
59秒前
九川完成签到,获得积分10
1分钟前
Juid举报白白白求助涉嫌违规
1分钟前
QinQin完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538