Disentangling Before Composing: Learning Invariant Disentangled Features for Compositional Zero-Shot Learning

不变(物理) 人工智能 计算机科学 零(语言学) 模式识别(心理学) 数学 数学物理 哲学 语言学
作者
Tian Zhang,Kongming Liang,Ruoyi Du,Wei Chen,Zhanyu Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-16
标识
DOI:10.1109/tpami.2024.3487222
摘要

Compositional Zero-Shot Learning (CZSL) aims to recognize novel compositions using knowledge learned from seen attribute-object compositions in the training set. Previous works mainly project an image and its corresponding composition into a common embedding space to measure their compatibility score. However, both attributes and objects share the visual representations learned above, leading the model to exploit spurious correlations and bias towards seen compositions. Instead, we reconsider CZSL as an out-of-distribution generalization problem. If an object is treated as a domain, we can learn object-invariant features to recognize attributes attached to any object reliably, and vice versa. Specifically, we propose an invariant feature learning framework to align different domains at the representation and gradient levels to capture the intrinsic characteristics associated with the tasks. To further facilitate and encourage the disentanglement of attributes and objects, we propose an "encoding-reshuffling-decoding" process to help the model avoid spurious correlations by randomly regrouping the disentangled features into synthetic features. Ultimately, our method improves generalization by learning to disentangle features that represent two independent factors of attributes and objects. Experiments demonstrate that the proposed method achieves state-of-the-art or competitive performance in both closed-world and open-world scenarios. Codes are available at https://github.com/PRIS-CV/Disentangling-before-Composing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知昂张发布了新的文献求助10
刚刚
刚刚
王根基完成签到,获得积分10
刚刚
喜羊羊完成签到,获得积分20
刚刚
LL发布了新的文献求助10
1秒前
1秒前
不够萌发布了新的文献求助20
3秒前
小二郎应助兴奋柜子采纳,获得10
4秒前
我是老大应助Alex采纳,获得200
4秒前
毕业顺利发布了新的文献求助10
5秒前
田様应助himan采纳,获得10
6秒前
爆米花应助yumiao采纳,获得10
7秒前
香蕉觅云应助川川采纳,获得10
7秒前
Markie发布了新的文献求助10
7秒前
wuxufang发布了新的文献求助50
8秒前
10秒前
10秒前
11秒前
12秒前
皮水之完成签到,获得积分10
13秒前
科研通AI5应助zhanyuji采纳,获得10
14秒前
玉米发布了新的文献求助10
14秒前
正在加载发布了新的文献求助10
15秒前
安晗默发布了新的文献求助10
16秒前
不够萌完成签到,获得积分10
16秒前
16秒前
皮水之发布了新的文献求助10
17秒前
17秒前
KIM完成签到,获得积分10
17秒前
传奇3应助兴奋柜子采纳,获得10
19秒前
19秒前
喜羊羊关注了科研通微信公众号
20秒前
鹏鱼燕完成签到,获得积分10
21秒前
Lance先生完成签到,获得积分10
21秒前
wuuu_ruby发布了新的文献求助20
21秒前
21秒前
一一发布了新的文献求助10
22秒前
打打应助羊驼采纳,获得10
23秒前
毕业顺利完成签到,获得积分10
24秒前
zhanyuji发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409