肿瘤微环境
嵌合抗原受体
癌症研究
过继性细胞移植
免疫学
免疫系统
生物
免疫疗法
T细胞
作者
Jianhua Luo,Meng Guo,Mingyan Huang,Yanfang Liu,Yuping Qian,Qiuyan Liu,Xuetao Cao
标识
DOI:10.1038/s41392-025-02158-2
摘要
Abstract Adoptive transfer of chimeric antigen receptor (CAR)-modified natural killer (NK) cells represents a transformative approach that has significantly advanced clinical outcomes in patients with malignant hematological conditions. However, the efficacy of CAR-NK cells in treating solid tumors is limited by their exhaustion, impaired infiltration and poor persistence in the immunosuppressive tumor microenvironment (TME). As NK cell functional states are associated with IL-2 cascade, we engineered mesothelin-specific CAR-NK cells that secrete neoleukin-2/15 (Neo-2/15), an IL-2Rβγ agonist, to resist immunosuppressive polarization within TME. The adoptively transferred Neo-2/15-armored CAR-NK cells exhibited enhanced cytotoxicity, less exhaustion and longer persistence within TME, thereby having superior antitumor activity against pancreatic cancer and ovarian cancer. Mechanistically, Neo-2/15 provided sustained and enhanced downstream IL-2 receptor signaling, which promotes the expression of c-Myc and nuclear respiratory factor 1 (NRF1) in CAR-NK cells. This upregulation was crucial for maintaining mitochondrial adaptability and metabolic resilience, ultimately leading to increased cytotoxicity and pronounced persistence of CAR-NK cells within the TME. The resistance against TME immunosuppressive polarization necessitated the upregulation of NRF1, which is essential to the augmentative effects elicited by Neo-2/15. Overexpression of NRF1 significantly bolsters the antitumor efficacy of CAR-NK cells both in vitro and in vivo, with increased ATP production. Collectively, Neo-2/15-expressing CAR-NK cells exerts superior antitumor effects by exhaustion-resistance and longer survival in solid tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI