Machine Learning to Automatically Differentiate Hypertrophic Cardiomyopathy, Cardiac Light Chain, and Cardiac Transthyretin Amyloidosis: A Multicenter CMR Study

医学 心脏淀粉样变性 肥厚性心肌病 转甲状腺素 限制性心肌病 心肌病 淀粉样变性 内科学 心脏病学 淀粉样变性 阶段(地层学) 心脏磁共振成像 心力衰竭 放射科 磁共振成像 免疫球蛋白轻链 生物 免疫学 抗体 古生物学
作者
Lukas D. Weberling,Andreas Ochs,Mitchel Benovoy,Fabian aus dem Siepen,Janek Salatzki,Evangelos Giannitsis,Chong Duan,Kevin Maresca,Yao Zhang,Jan Möller,Silke Friedrich,Stefan Schönland,Benjamin Meder,Matthias G. Friedrich,Norbert Frey,Florian André
出处
期刊:Circulation-cardiovascular Imaging [Lippincott Williams & Wilkins]
卷期号:18 (7): e017761-e017761 被引量:3
标识
DOI:10.1161/circimaging.124.017761
摘要

BACKGROUND: Cardiac amyloidosis is associated with poor outcomes and is caused by the interstitial deposition of misfolded proteins, typically ATTR (transthyretin) or AL (light chains). Although specific therapies during early disease stages exist, the diagnosis is often only established at an advanced stage. Cardiovascular magnetic resonance (CMR) is the gold standard for imaging suspected myocardial disease. However, differentiating cardiac amyloidosis from hypertrophic cardiomyopathy may be challenging, and a reliable method for an image-based classification of amyloidosis subtypes is lacking. This study sought to investigate a CMR machine learning (ML) algorithm to identify and distinguish cardiac amyloidosis. METHODS: This retrospective, multicenter, multivendor feasibility study included consecutive patients diagnosed with hypertrophic cardiomyopathy or AL/ATTR amyloidosis and healthy volunteers. Standard clinical information, semiautomated CMR imaging data, and qualitative CMR features were integrated into a trained ML algorithm. RESULTS: Four hundred participants (95 healthy, 94 hypertrophic cardiomyopathy, 95 AL, and 116 ATTR) from 56 institutions were included (269 men aged 58.5 [48.4–69.4] years). A 3-stage ML screening cascade sequentially differentiated healthy volunteers from patients, then hypertrophic cardiomyopathy from amyloidosis, and then AL from ATTR. The ML algorithm resulted in an accurate differentiation at each step (area under the curve, 1.0, 0.99, and 0.92, respectively). After reducing included data to demographics and imaging data alone, the performance remained excellent (area under the curve, 0.99, 0.98, and 0.88, respectively), even after removing late gadolinium enhancement imaging data from the model (area under the curve, 1.0, 0.95, 0.86, respectively). CONCLUSIONS: A trained ML model using semiautomated CMR imaging data and patient demographics can accurately identify cardiac amyloidosis and differentiate subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助u深度采纳,获得10
刚刚
星辰大海应助学习采纳,获得10
刚刚
1秒前
田様应助xinyike采纳,获得10
2秒前
2秒前
陈y完成签到 ,获得积分10
2秒前
3秒前
jidong发布了新的文献求助10
3秒前
学到疯魔完成签到,获得积分10
3秒前
玄颂完成签到,获得积分10
3秒前
4秒前
思源应助liuxianglin2006采纳,获得50
4秒前
5秒前
zhonglv7应助oolong采纳,获得10
6秒前
6秒前
一点发布了新的文献求助10
7秒前
研友_VZG7GZ应助白踏歌采纳,获得20
7秒前
晚若旧发布了新的文献求助10
8秒前
8秒前
yff发布了新的文献求助10
8秒前
莫封叶发布了新的文献求助30
8秒前
可爱的函函应助落后谷兰采纳,获得10
9秒前
9秒前
Dominic7888完成签到,获得积分10
9秒前
烯烃完成签到,获得积分10
9秒前
10秒前
10秒前
老实的采蓝完成签到,获得积分10
10秒前
zhong完成签到,获得积分10
10秒前
11秒前
mof发布了新的文献求助10
11秒前
12秒前
12秒前
笨笨的秋发布了新的文献求助10
12秒前
12秒前
学习发布了新的文献求助10
12秒前
小硕发布了新的文献求助10
13秒前
莫大完成签到 ,获得积分10
13秒前
佚名123发布了新的文献求助10
13秒前
耶耶耶发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5169002
求助须知:如何正确求助?哪些是违规求助? 4360389
关于积分的说明 13576138
捐赠科研通 4207207
什么是DOI,文献DOI怎么找? 2307389
邀请新用户注册赠送积分活动 1306942
关于科研通互助平台的介绍 1253600