Postoperative Recovery Assessment for Parkinson's Patients via Light-weighted Topological Pose Estimation

姿势 计算机科学 医学 拓扑(电路) 估计 人工智能 计算机视觉 数学 组合数学 工程类 系统工程
作者
Zeping Ma,Z Q Qin,Botao Jiang,Guosong Zhu,Zhen Qin,Geng Ji,Mohammed J. F. Alenazi,Saru Kumari
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3559493
摘要

The UPDRS III scale plays a critical role in diagnosing the progression of Parkinson's disease. Current methods often involve doctors guiding patients through specific actions on the scale, recording their performance, and assigning scores. However, this approach has several drawbacks, including the lengthy time required for doctorpatient communication, the high costs of patients traveling to hospitals for follow-up visits, and the reliance on subjective judgments from doctors, which lack standardized criteria. With advancements in artificial intelligence, many traditional processes have been partially automated. To help patients reduce diagnosis time, lower medical costs, and provide more accurate and objective evaluation results, this paper proposes a Transformer-based pose estimation model for assessing UPDRS III scale actions. By integrating skeleton-based evaluations from the network with a series of post-processing operations, the model enables patients to perform self-assessments of their post-treatment recovery at home, saving doctors significant time. This work introduces a cascaded graph self-attention module, SGAM (Spatial-Graphical Attention Module), to enhance the network's understanding of human topology. Additionally, it proposes a lightweight convolutional block, Chi-block, which employs a novel approach leveraging the attribute invariance of filters to interpret model performance and guide compression. This approach reduces computational costs and model parameters while preserving accuracy. The proposed method demonstrates robust performance on human pose estimation (HPE) datasets and showcases impressive lightweight performance on benchmark datasets such as ImageNet-1K and CIFAR-10. These results demonstrate the potential of artificial intelligence in enabling automated remote diagnosis and treatment for Parkinson's patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WeMeH完成签到,获得积分10
2秒前
DQ发布了新的文献求助10
3秒前
cccc完成签到,获得积分10
6秒前
A1len完成签到,获得积分10
7秒前
深海鱼完成签到,获得积分10
8秒前
11秒前
MechaniKer完成签到 ,获得积分10
11秒前
zuofighting发布了新的文献求助10
12秒前
嘿嘿发布了新的文献求助10
14秒前
子非愚发布了新的文献求助10
15秒前
SY15732023811完成签到 ,获得积分10
16秒前
17秒前
开心的忆灵完成签到,获得积分10
17秒前
18秒前
XIA发布了新的文献求助10
18秒前
22秒前
数值分析完成签到 ,获得积分10
22秒前
23秒前
韭黄发布了新的文献求助10
27秒前
27秒前
李国铭完成签到,获得积分10
28秒前
高高的从波完成签到,获得积分10
31秒前
32秒前
今后应助韭黄采纳,获得10
33秒前
SYLH应助weishen采纳,获得20
34秒前
34秒前
35秒前
猫咪老师应助ggbond采纳,获得30
36秒前
韭黄完成签到,获得积分20
38秒前
彭于晏应助Chenzhs采纳,获得10
39秒前
40秒前
pipizhu发布了新的文献求助10
40秒前
天天完成签到,获得积分10
40秒前
谦让小松鼠完成签到,获得积分10
42秒前
43秒前
45秒前
46秒前
ZHEN发布了新的文献求助10
46秒前
chloe完成签到 ,获得积分10
48秒前
48秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825758
求助须知:如何正确求助?哪些是违规求助? 3367957
关于积分的说明 10448523
捐赠科研通 3087392
什么是DOI,文献DOI怎么找? 1698660
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973