FD-YOLO11: A Feature-Enhanced Deep Learning Model for Steel Surface Defect Detection

计算机科学 深度学习 人工智能 特征(语言学) 曲面(拓扑) 模式识别(心理学) 数学 几何学 语言学 哲学
作者
Zichen Dang,Xingshuo Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 63981-63993 被引量:10
标识
DOI:10.1109/access.2025.3559733
摘要

Steel surface defect detection plays a critical quality control role in industrial manufacturing. However, the existing methods struggle to balance accuracy and efficiency, especially in complex defect environments, where significant challenges persist. To address this challenge, FD-YOLO11, which is a YOLO11-based deep learning model with enhanced feature extraction and fusion mechanisms for attaining improved detection performance, is proposed in this paper. To enhance the multiscale feature extraction process, self-calibrated convolution is integrated into the C3k2 module. Additionally, an FSPPF structure is designed to optimize the process of fusing local and global information, improving the defect recognition ability of the model in complex backgrounds. Furthermore, the DySample mechanism replaces the traditional upsampling method, effectively refining the feature fusion process and minimizing the semantic information loss. The NEU-DET and GC10-DET datasets are used for evaluation purposes, and the experimental results demonstrate that FD-YOLO11 achieves 4.6% and 4.0% mAP@0.5 improvements over YOLO11s while maintaining an inference speed comparable to that of YOLO11s. This ensures a compromise between detection performance and computational efficiency. The model exhibits enhanced recognition capabilities and greater robustness in complex defect detection tasks. This research indicates that FD-YOLO11 provides a high-precision solution for metal surface defect detection, with broad application potential in intelligent manufacturing and industrial inspection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜夜发布了新的文献求助10
1秒前
汉堡包应助易只羊采纳,获得10
1秒前
1秒前
1秒前
陈晓旭发布了新的文献求助10
2秒前
2秒前
FashionBoy应助多多采纳,获得10
4秒前
寻空完成签到,获得积分10
4秒前
黄登锋发布了新的文献求助10
4秒前
dong发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
Lucas应助zyc采纳,获得10
6秒前
6秒前
jjdeng发布了新的文献求助10
6秒前
软糖完成签到 ,获得积分10
6秒前
执着听芹发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
nn完成签到,获得积分10
8秒前
fengliurencai完成签到,获得积分10
8秒前
夜夜完成签到,获得积分10
9秒前
Su发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
缓慢孤菱完成签到,获得积分20
11秒前
柔弱白羊完成签到,获得积分10
11秒前
缥缈丹秋发布了新的文献求助10
12秒前
日尧完成签到,获得积分10
12秒前
沉迷学术无法自拔完成签到,获得积分10
12秒前
飘逸的雪碧完成签到,获得积分20
13秒前
宇心完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
ZsJJkk完成签到,获得积分10
15秒前
无花果应助fancy采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626305
求助须知:如何正确求助?哪些是违规求助? 4712106
关于积分的说明 14958305
捐赠科研通 4781298
什么是DOI,文献DOI怎么找? 2554214
邀请新用户注册赠送积分活动 1515957
关于科研通互助平台的介绍 1476289