Metasurface-enhanced terahertz imaging for glioblastoma in orthotopic xenograft mouse model combined with neural network decision making

胶质母细胞瘤 太赫兹辐射 人工神经网络 生物医学工程 计算机科学 神经科学 癌症研究 材料科学 医学 光电子学 人工智能 生物
作者
Yeeun Roh,Kyu-hyeon Kim,Geon Lee,Jinwoo Lee,Taeyeon Kim,Beomju Shin,Dong Min Kang,Yun Kyung Kim,Minah Seo
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:287: 117715-117715
标识
DOI:10.1016/j.bios.2025.117715
摘要

Terahertz (THz) optical sensing and imaging offer significant potential in a range of biological and medical applications owing to their low-energy, non-ionizing nature, and ultra-broadband spectral information, which includes numerous molecular fingerprints. However, conventional THz imaging suffers from limited contrast and low absorption cross-section in biological tissues. Recent advances in terahertz sensing platforms, facilitated by various metasurfaces, have addressed these limitations by enhancing the sensitivity and selectivity of optical detection and imaging. This study presents an advanced label-free terahertz imaging technique that leverages a metasurface to enhance image contrast. We applied this method to image glioblastoma model mouse brain tissues. To identify cancerous regions clearly, the complex refractive indices across the brain tissues were determined using a finite element method simulation. Furthermore, the strong resonance features of the metasurface facilitate correlation-based learning in neural networks. We employed a convolutional neural network to segment cancer boundaries using the metasurface-enhanced imaging data. Glioblastoma regions were identified with an accuracy of over 99 %, by using fluorescence-labeled images as the training data for the neural networks. This study highlights the critical role of metasurfaces in fundamentally enhancing terahertz wave-matter interactions and how integration with neural networks enables highly sensitive cancer detection. This paves the way for the clinical applications of terahertz imaging technologies in medical diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的含莲完成签到 ,获得积分10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
思源应助ASBL采纳,获得10
2秒前
单胖胖发布了新的文献求助10
3秒前
7秒前
7秒前
10秒前
科研通AI5应助烁果累累采纳,获得30
10秒前
Tingshan发布了新的文献求助10
11秒前
11秒前
小蘑菇应助古月采纳,获得10
12秒前
密林小叶子完成签到,获得积分10
12秒前
乐乐应助李迅迅采纳,获得10
13秒前
14秒前
喜悦一德发布了新的文献求助10
14秒前
15秒前
结实听莲完成签到 ,获得积分10
15秒前
NexusExplorer应助幸福大白采纳,获得10
16秒前
17秒前
well发布了新的文献求助10
17秒前
20秒前
20秒前
WAM发布了新的文献求助10
20秒前
小昕思完成签到 ,获得积分10
20秒前
21秒前
22秒前
23秒前
well完成签到,获得积分20
24秒前
luyuhao3发布了新的文献求助10
27秒前
28秒前
张佩航驳回了gm应助
28秒前
顾矜应助guhuihaozi采纳,获得10
28秒前
深情安青应助11采纳,获得10
29秒前
苏苏发布了新的文献求助20
30秒前
XXY发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4482813
求助须知:如何正确求助?哪些是违规求助? 3938774
关于积分的说明 12218518
捐赠科研通 3594043
什么是DOI,文献DOI怎么找? 1976495
邀请新用户注册赠送积分活动 1013649
科研通“疑难数据库(出版商)”最低求助积分说明 906780