Development and validation of a prognostic prediction model for lumbar-disc herniation based on machine learning and fusion of clinical text data and radiomic features

医学 神经外科 腰椎间盘突出症 无线电技术 人工智能 腰椎 放射科 医学物理学 机器学习 数据挖掘 计算机科学
作者
Zhipeng Wang,Hongwei Zhang,Yuanzhen Li,Xiaogang Zhang,Jianjun Liu,Zhen Ren,Qin Daping,Zhao Xiyun
出处
期刊:European Spine Journal [Springer Science+Business Media]
标识
DOI:10.1007/s00586-025-09102-6
摘要

Based on preoperative clinical text data and lumbar magnetic resonance imaging (MRI), we applied machine learning (ML) algorithms to construct a model that would predict early recurrence in lumbar-disc herniation (LDH) patients who underwent percutaneous endoscopic lumbar discectomy (PELD). We then explored the clinical performance of this prognostic prediction model via multimodal-data fusion. Clinical text data and radiological images of LDH patients who underwent PELD at the Intervertebral Disc Center of the Affiliated Hospital of Gansu University of Traditional Chinese Medicine (AHGUTCM; Lanzhou, China) were retrospectively collected. Two radiologists with clinical-image reading experience independently outlined regions of interest (ROI) on the MRI images and extracted radiomic features using 3D Slicer software. We then randomly separated the samples into a training set and a test set at a 7:3 ratio, used eight ML algorithms to construct predictive radiomic-feature models, evaluated model performance by the area under the curve (AUC), and selected the optimal model for screening radiomic features and calculating radiomic scores (Rad-scores). Finally, after using logistic regression to construct a nomogram for predicting the early-recurrence rate, we evaluated the nomogram's clinical applicability using a clinical-decision curve. We initially extracted 851 radiomic features. After constructing our models, we determined based on AUC values that the optimal ML algorithm was least absolute shrinkage and selection operator (LASSO) regression, which had an AUC of 0.76 and an accuracy rate of 91%. After screening features using the LASSO model, we predicted Rad-score for each sample of recurrent LDH using nine radiomic features. Next, we fused three of these clinical features -age, diabetes, and heavy manual labor-to construct a nomogram with an AUC of 0.86 (95% confidence interval [CI], 0.79-0.94). Analysis of the clinical-decision and impact curves showed that the prognostic prediction model with multimodal-data fusion had good clinical validity and applicability. We developed and analyzed a prognostic prediction model for LDH with multimodal-data fusion. Our model demonstrated good performance in predicting early postoperative recurrence in LDH patients; therefore, it has good prospects for clinical application and can provide clinicians with objective, accurate information to help them decide on presurgical treatment plans. However, external-validation studies are still needed to further validate the model's comprehensive performance and improve its generalization and extrapolation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪汪队发布了新的文献求助10
1秒前
故意的如冬完成签到,获得积分10
2秒前
毕业毕业完成签到 ,获得积分10
3秒前
耀樱发布了新的文献求助10
5秒前
Meyako应助lune采纳,获得20
10秒前
11秒前
Warren发布了新的文献求助10
15秒前
WANG完成签到,获得积分10
17秒前
18秒前
李娟完成签到,获得积分20
25秒前
26秒前
华仔应助喜欢悠哉独自在采纳,获得10
27秒前
梁某完成签到,获得积分10
27秒前
tutu发布了新的文献求助10
31秒前
gxr完成签到,获得积分20
31秒前
研友_LX66qZ完成签到,获得积分10
32秒前
FRIGHTINGx完成签到 ,获得积分10
36秒前
大壮完成签到 ,获得积分10
39秒前
ZHANGXUEJUN完成签到,获得积分10
44秒前
听风完成签到,获得积分10
45秒前
mmm完成签到,获得积分10
46秒前
一个大花瓶完成签到 ,获得积分10
49秒前
52秒前
a大熊完成签到,获得积分10
52秒前
Warren完成签到,获得积分10
53秒前
wanci应助王多鱼采纳,获得10
55秒前
1分钟前
1分钟前
韦老虎发布了新的文献求助150
1分钟前
dd发布了新的文献求助10
1分钟前
1分钟前
yuzhecheng发布了新的文献求助10
1分钟前
颜沛文完成签到,获得积分10
1分钟前
不愿透露姓名科研人完成签到 ,获得积分10
1分钟前
Hyg完成签到 ,获得积分10
1分钟前
dd完成签到,获得积分10
1分钟前
芳芳完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4775838
求助须知:如何正确求助?哪些是违规求助? 4107981
关于积分的说明 12707388
捐赠科研通 3829099
什么是DOI,文献DOI怎么找? 2112442
邀请新用户注册赠送积分活动 1136244
关于科研通互助平台的介绍 1019939