A scalable framework for benchmark embedding models in semantic health-care tasks

作者
Shelly Soffer,Mahmud Omar,Moran Gendler,Benjamin S. Glicksberg,Patricia Kovatch,Orly Efros,Robert Freeman,Alexander W. Charney,Girish N. Nadkarni,Eyal Klang
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:32 (12): 1877-1887
标识
DOI:10.1093/jamia/ocaf149
摘要

Abstract Objectives Text embeddings are promising for semantic tasks, such as retrieval augmented generation (RAG). However, their application in health care is underexplored due to a lack of benchmarking methods. We introduce a scalable benchmarking method to test embeddings for health-care semantic tasks. Materials and Methods We evaluated 39 embedding models across 7 medical semantic similarity tasks using diverse datasets. These datasets comprised real-world patient data (from the Mount Sinai Health System and MIMIC IV), biomedical texts from PubMed, and synthetic data generated with Llama-3-70b. We first assessed semantic textual similarity (STS) by correlating the model-generated similarity scores with noise levels using Spearman rank correlation. We then reframed the same tasks as retrieval problems, evaluated by mean reciprocal rank and recall at k. Results In total, evaluating 2000 text pairs per 7 tasks for STS and retrieval yielded 3.28 million model assessments. Larger models (>7b parameters), such as those based on Mistral-7b and Gemma-2-9b, consistently performed well, especially in long-context tasks. The NV-Embed-v1 model (7b parameters), although top in short tasks, underperformed in long tasks. For short tasks, smaller models such as b1ade-embed (335M parameters) performed on-par to the larger models. For long retrieval tasks, the larger models significantly outperformed the smaller ones. Discussion The proposed benchmarking framework demonstrates scalability and flexibility, offering a structured approach to guide the selection of embedding models for a wide range of health-care tasks. Conclusion By matching the appropriate model with the task, the framework enables more effective deployment of embedding models, enhancing critical applications such as semantic search and retrieval-augmented generation (RAG).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郭发布了新的文献求助10
刚刚
小雷完成签到,获得积分10
刚刚
NexusExplorer应助zzly采纳,获得30
刚刚
打打应助连衣裙采纳,获得10
1秒前
1秒前
Brian发布了新的文献求助10
2秒前
2秒前
斯文败类应助朱砂采纳,获得10
2秒前
Sober发布了新的文献求助10
2秒前
泽锦臻发布了新的文献求助10
2秒前
lucy完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI6应助负负采纳,获得30
5秒前
高大亦巧完成签到,获得积分10
5秒前
山月发布了新的文献求助10
6秒前
ccccc发布了新的文献求助10
7秒前
pp发布了新的文献求助10
7秒前
栾小鱼发布了新的文献求助10
8秒前
安世倌发布了新的文献求助10
8秒前
10秒前
鳄鱼不做饿梦完成签到,获得积分10
11秒前
汉堡包应助小郭采纳,获得10
11秒前
风起云飞扬完成签到 ,获得积分10
11秒前
lyyzxx完成签到 ,获得积分10
12秒前
化学天空完成签到,获得积分10
12秒前
阿秋完成签到,获得积分10
12秒前
pp完成签到,获得积分10
12秒前
日常常完成签到,获得积分10
13秒前
隐形曼青应助Lixin采纳,获得10
13秒前
14秒前
14秒前
15秒前
16秒前
南城雨落发布了新的文献求助10
16秒前
16秒前
风吹麦田应助负负采纳,获得30
17秒前
可靠的绝音完成签到 ,获得积分10
17秒前
nibaba关注了科研通微信公众号
18秒前
乐观夜春发布了新的文献求助10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451784
求助须知:如何正确求助?哪些是违规求助? 4559632
关于积分的说明 14274052
捐赠科研通 4483642
什么是DOI,文献DOI怎么找? 2455593
邀请新用户注册赠送积分活动 1446479
关于科研通互助平台的介绍 1422340