Short-term traffic flow prediction based on vehicle trip chain features

期限(时间) 计算机科学 流量(计算机网络) 链条(单位) 计算机网络 物理 量子力学 天文
作者
Xiaoqing Wang,Feng Sun,Xiaolong Ma,Fangtong Jiao,Benxing Liu,Pengsheng Zhao
出处
期刊:Transportation Letters: The International Journal of Transportation Research [Taylor & Francis]
卷期号:: 1-12
标识
DOI:10.1080/19427867.2024.2334100
摘要

Short-term traffic flow prediction can improve the efficiency of transportation operations. Historical data-driven prediction methods have been proved to perform well. However, saturated or oversaturated traffic operations cannot be accurately predicted based only on detector data from a single intersection. This study proposes a short-term traffic prediction method based on vehicle trip chain features. First, the video data is pre-processed and quality assessed. Then, vehicle trip chain features are mined to correlate upstream and downstream intersections.Convolutional neural networks and long-short-term-memory model are built next. The model is launched to train the predictor and output the traffic flow for all turns at each approach to the intersection. After cases we demonstrate that the prediction accuracy of CNNs-LSTM is usually better than other methods, especially during oversaturation. In addition, we demonstrate that vehicle trip chain features can improve prediction accuracy and shorten the time consumed by the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠惊蛰完成签到,获得积分10
刚刚
zzxx完成签到,获得积分10
1秒前
giao发布了新的文献求助10
1秒前
1秒前
搜集达人应助lyn_zhou采纳,获得10
1秒前
你永远可以相信光完成签到 ,获得积分10
3秒前
mofei完成签到,获得积分10
3秒前
ding应助风致采纳,获得10
3秒前
4秒前
5秒前
7秒前
CokeColala完成签到,获得积分20
8秒前
七七完成签到,获得积分20
8秒前
英俊的铭应助giao采纳,获得10
10秒前
benhzh发布了新的文献求助10
10秒前
Satellites完成签到,获得积分10
11秒前
11秒前
11秒前
水牛发布了新的文献求助10
12秒前
无奈的石头完成签到,获得积分20
12秒前
风致应助文件撤销了驳回
12秒前
FashionBoy应助gzy采纳,获得30
12秒前
ldtbest0525完成签到,获得积分10
13秒前
13秒前
雪山摩卡完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
万能图书馆应助MG采纳,获得10
17秒前
ZSZ发布了新的文献求助10
17秒前
Ava应助雪山摩卡采纳,获得10
17秒前
守拙完成签到 ,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397