清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Metalantis: A Comprehensive Underwater Image Enhancement Framework

水下 计算机科学 遥感 图像增强 计算机视觉 图像(数学) 人工智能 地质学 海洋学
作者
Hao Wang,Weibo Zhang,Lu Bai,Peng Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:71
标识
DOI:10.1109/tgrs.2024.3387722
摘要

Underwater images normally suffer from visual degradation issues such as color deviations, low contrasts, and blurred details. Recently, numerous underwater image enhancement algorithms have been proposed to address these issues. However, constrained by underwater conditions, acquiring non-underwater images and depth maps for underwater images is often challenging. This limitation significantly hampers the performance of data driven-based methods and physical model-based methods. Additionally, existing physical model-based methods typically require manual parameter settings, which tend to be bruteforce and insufficient to effectively address the diverse underwater scenes. To overcome these limitations, this paper presents a comprehensive underwater image enhancement framework comprising three phases: metamergence (i.e., meta submergence), metalief (i.e., meta relief), and metaebb (i.e., meta ebb). These phases are dedicated to virtual underwater image synthesis, underwater image depth map estimation, and the configuration of state-of-the-art physical models for underwater image enhancement by reinforcement learning, separately. While the three phases are trained separately, the former phase provides the necessary data for training the latter. We refer to the overall three phases as metalantis (i.e., meta Atlantis) because its training processes, involving variations from submergence via relief to ebb over indoor scenes, mimic the virtual variations of Atlantis. The metalantis framework empowers state-of-the-art physical models of underwater imaging through reinforcement learning with virtually generated data. The well-trained metalantis framework can take an underwater image as the sole input, process it into virtual representations, and finally enhance it. Comprehensive qualitative and quantitative empirical evaluations validate that our metalantis framework outperforms state-of-the-art underwater image enhancement methods. We release our code at https://gitee.com/wanghaoupc/Metalantis_UIE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cityhunter7777完成签到,获得积分10
3秒前
真的OK完成签到,获得积分10
3秒前
guoyufan完成签到,获得积分10
3秒前
CGBIO完成签到,获得积分10
3秒前
啪嗒大白球完成签到,获得积分10
3秒前
runtang完成签到,获得积分10
4秒前
大树完成签到,获得积分10
4秒前
Temperature完成签到,获得积分10
4秒前
675完成签到,获得积分10
5秒前
tingting完成签到,获得积分10
5秒前
张浩林完成签到,获得积分10
5秒前
qq完成签到,获得积分10
5秒前
BMG完成签到,获得积分10
5秒前
阳光完成签到,获得积分10
5秒前
呵呵哒完成签到,获得积分10
6秒前
喜喜完成签到,获得积分10
6秒前
美满惜寒完成签到,获得积分10
6秒前
朝夕之晖完成签到,获得积分10
7秒前
王jyk完成签到,获得积分10
7秒前
ys1008完成签到,获得积分10
7秒前
臣臣想睡觉完成签到,获得积分10
7秒前
清水完成签到,获得积分10
7秒前
BowieHuang完成签到,获得积分0
8秒前
Syan完成签到,获得积分10
8秒前
zwzw完成签到,获得积分10
8秒前
prrrratt完成签到,获得积分10
8秒前
考拉发布了新的文献求助10
9秒前
12秒前
aspirin完成签到 ,获得积分10
19秒前
勤劳的颤完成签到 ,获得积分10
25秒前
今我来思完成签到 ,获得积分10
26秒前
29秒前
万能图书馆应助安详紫采纳,获得10
35秒前
AllRightReserved完成签到 ,获得积分10
49秒前
喻初原完成签到 ,获得积分10
53秒前
57秒前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
简单花花完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724430
求助须知:如何正确求助?哪些是违规求助? 5288351
关于积分的说明 15299928
捐赠科研通 4872351
什么是DOI,文献DOI怎么找? 2616894
邀请新用户注册赠送积分活动 1566736
关于科研通互助平台的介绍 1523704