Metalantis: A Comprehensive Underwater Image Enhancement Framework

水下 计算机科学 遥感 图像增强 计算机视觉 图像(数学) 人工智能 地质学 海洋学
作者
Hao Wang,Weibo Zhang,Lu Bai,Peng Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:71
标识
DOI:10.1109/tgrs.2024.3387722
摘要

Underwater images normally suffer from visual degradation issues such as color deviations, low contrasts, and blurred details. Recently, numerous underwater image enhancement algorithms have been proposed to address these issues. However, constrained by underwater conditions, acquiring non-underwater images and depth maps for underwater images is often challenging. This limitation significantly hampers the performance of data driven-based methods and physical model-based methods. Additionally, existing physical model-based methods typically require manual parameter settings, which tend to be bruteforce and insufficient to effectively address the diverse underwater scenes. To overcome these limitations, this paper presents a comprehensive underwater image enhancement framework comprising three phases: metamergence (i.e., meta submergence), metalief (i.e., meta relief), and metaebb (i.e., meta ebb). These phases are dedicated to virtual underwater image synthesis, underwater image depth map estimation, and the configuration of state-of-the-art physical models for underwater image enhancement by reinforcement learning, separately. While the three phases are trained separately, the former phase provides the necessary data for training the latter. We refer to the overall three phases as metalantis (i.e., meta Atlantis) because its training processes, involving variations from submergence via relief to ebb over indoor scenes, mimic the virtual variations of Atlantis. The metalantis framework empowers state-of-the-art physical models of underwater imaging through reinforcement learning with virtually generated data. The well-trained metalantis framework can take an underwater image as the sole input, process it into virtual representations, and finally enhance it. Comprehensive qualitative and quantitative empirical evaluations validate that our metalantis framework outperforms state-of-the-art underwater image enhancement methods. We release our code at https://gitee.com/wanghaoupc/Metalantis_UIE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助dmoney采纳,获得10
2秒前
李春霞发布了新的文献求助10
2秒前
2秒前
迷你的棒球完成签到,获得积分10
3秒前
顾矜应助吹吹蒲公英采纳,获得10
4秒前
冯冯给冯冯的求助进行了留言
4秒前
4秒前
白子双发布了新的文献求助10
4秒前
5秒前
gexiaoyang发布了新的文献求助10
5秒前
7秒前
7秒前
陈杰发布了新的文献求助10
7秒前
8秒前
哈哈哈发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
9秒前
坚定的海露完成签到,获得积分10
10秒前
香蕉觅云应助西瓜翠衣采纳,获得10
12秒前
angelinazh发布了新的文献求助20
12秒前
12秒前
汪哈七发布了新的文献求助10
14秒前
学林书屋完成签到,获得积分10
14秒前
orixero应助科研通管家采纳,获得10
15秒前
15秒前
思源应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
卡卡东发布了新的文献求助10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422190
求助须知:如何正确求助?哪些是违规求助? 4537053
关于积分的说明 14155951
捐赠科研通 4453645
什么是DOI,文献DOI怎么找? 2443014
邀请新用户注册赠送积分活动 1434419
关于科研通互助平台的介绍 1411459