SCTransNet: Spatial-Channel Cross Transformer Network for Infrared Small Target Detection

遥感 计算机科学 变压器 电气工程 地质学 电压 工程类
作者
Shuai Yuan,Hanlin Qin,Xiang Yan,Naveed Akhtar,Ajmal Mian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:12
标识
DOI:10.1109/tgrs.2024.3383649
摘要

Infrared small target detection (IRSTD) has recently benefitted greatly from U-shaped neural models. However, largely overlooking effective global information modeling, existing techniques struggle when the target has high similarities with the background. We present a S patial-channel C ross T ransformer Net work (SCTransNet) that leverages spatial-channel cross transformer blocks (SCTBs) on top of long-range skip connections to address the aforementioned challenge. In the proposed SCTBs, the outputs of all encoders are interacted with cross transformer to generate mixed features, which are redistributed to all decoders to effectively reinforce semantic differences between the target and clutter at full levels. Specifically, SCTB contains the following two key elements: (a) spatial-embedded single-head channel-cross attention (SSCA) for exchanging local spatial features and full-level global channel information to eliminate ambiguity among the encoders and facilitate high-level semantic associations of the images, and (b) a complementary feed-forward network (CFN) for enhancing the feature discriminability via a multi-scale strategy and cross-spatial-channel information interaction to promote beneficial information transfer. Our SCTransNet effectively encodes the semantic differences between targets and backgrounds to boost its internal representation for detecting small infrared targets accurately. Extensive experiments on three public datasets, NUDT-SIRST, NUAA-SIRST, and IRSTD-1K, demonstrate that the proposed SCTransNet outperforms existing IRSTD methods. Our code will be made public at https://github.com/xdFai/SCTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WFF完成签到,获得积分10
2秒前
tzjz_zrz完成签到,获得积分10
2秒前
2秒前
星辰大海应助对潇潇暮雨采纳,获得10
3秒前
3秒前
梵高完成签到,获得积分10
5秒前
6秒前
7秒前
ShiRz发布了新的文献求助10
7秒前
周周完成签到 ,获得积分10
7秒前
。。完成签到 ,获得积分10
9秒前
加油加油发布了新的文献求助30
11秒前
13秒前
Shandongdaxiu发布了新的文献求助10
13秒前
Hello应助幽默的友容采纳,获得10
14秒前
14秒前
16秒前
可靠之玉完成签到,获得积分10
17秒前
叶九幽完成签到,获得积分10
17秒前
虎子完成签到 ,获得积分10
18秒前
长安宁发布了新的文献求助10
20秒前
电击小子完成签到 ,获得积分10
20秒前
彩色映雁发布了新的文献求助20
21秒前
24秒前
科研通AI2S应助VDC采纳,获得30
26秒前
00发布了新的文献求助10
28秒前
Fuckacdemic完成签到 ,获得积分10
30秒前
Laity完成签到,获得积分10
30秒前
31秒前
Owen应助加油加油采纳,获得30
32秒前
Robin完成签到,获得积分20
32秒前
35秒前
36秒前
alltoowell完成签到,获得积分0
41秒前
努力的淼淼完成签到 ,获得积分10
43秒前
小春卷完成签到,获得积分10
46秒前
48秒前
49秒前
50秒前
笨笨芯应助追寻啤酒采纳,获得30
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781253
求助须知:如何正确求助?哪些是违规求助? 3326745
关于积分的说明 10228256
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751