CHAOS THEORY, ADVANCED METAHEURISTIC ALGORITHMS AND THEIR NEWFANGLED DEEP LEARNING ARCHITECTURE OPTIMIZATION APPLICATIONS: A REVIEW

元启发式 计算机科学 人工智能 混沌(操作系统) 建筑 算法 混沌理论 数学优化 机器学习 数学 混乱的 计算机安全 艺术 视觉艺术
作者
Akif Akgül,Yeliz Karaca,Muhammed Ali Pala,Murat Erhan Çimen,Ali Fuat Boz,Mustafa Zahid Yıldız
出处
期刊:Fractals [World Scientific]
卷期号:32 (03) 被引量:1
标识
DOI:10.1142/s0218348x24300010
摘要

Metaheuristic techniques are capable of representing optimization frames with their specific theories as well as objective functions owing to their being adjustable and effective in various applications. Through the optimization of deep learning models, metaheuristic algorithms inspired by nature, imitating the behavior of living and non-living beings, have been used for about four decades to solve challenging, complex, and chaotic problems. These algorithms can be categorized as evolution-based, swarm-based, nature-based, human-based, hybrid, or chaos-based. Chaos theory, as a useful approach to understanding neural network optimization, has the basic idea of viewing the neural network optimization as a dynamical system in which the equation schemes are utilized from the space pertaining to learnable parameters, namely optimization trajectory, to itself, which enables the description of the evolution of the system by understanding the training behavior, which is to say the number of iterations over time. The examination of the recent studies reveals the importance of chaos theory, which is sensitive to initial conditions with randomness and dynamical properties that are principally emerging on the complex multimodal landscape. Chaotic optimization, in this regard, accelerates the speed of the algorithm while also enhancing the variety of movement patterns. The significance of hybrid algorithms developed through their applications in different domains concerning real-world phenomena and well-known benchmark problems in the literature is also evident. Metaheuristic optimization algorithms have also been applied to deep learning or deep neural networks (DNNs), a branch of machine learning. In this respect, the basic features of deep learning and DNNs and the extensive use of metaheuristic algorithms are overviewed and explained. Accordingly, the current review aims at providing new insights into the studies that deal with metaheuristic algorithms, hybrid-based metaheuristics, chaos-based metaheuristics as well as deep learning besides presenting recent information on the development of the essence of this branch of science with emerging opportunities, applicability-based optimization aspects and generation of well-informed decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
HHYYAA发布了新的文献求助10
2秒前
李健的小迷弟应助HHYYAA采纳,获得10
5秒前
smin完成签到,获得积分10
6秒前
Jeamren完成签到,获得积分10
7秒前
风趣丝发布了新的文献求助10
7秒前
zz完成签到,获得积分10
8秒前
黑猫小苍完成签到,获得积分10
8秒前
沉静寒云完成签到 ,获得积分10
8秒前
babyhead完成签到,获得积分10
12秒前
赘婿应助wowser采纳,获得10
15秒前
Orange应助韩hqf采纳,获得10
17秒前
随风完成签到,获得积分10
19秒前
20秒前
Bob完成签到,获得积分10
21秒前
JHcHuN完成签到,获得积分10
22秒前
23秒前
23秒前
Lucas应助黑猫小苍采纳,获得10
24秒前
JHcHuN发布了新的文献求助10
25秒前
zzf完成签到,获得积分10
25秒前
萧水白完成签到,获得积分10
25秒前
wowser发布了新的文献求助10
28秒前
zzf发布了新的文献求助10
28秒前
meimale完成签到,获得积分10
31秒前
雪白的紫翠完成签到 ,获得积分10
32秒前
33秒前
zhl完成签到,获得积分10
35秒前
现代的紫霜完成签到,获得积分10
37秒前
喜悦香萱发布了新的文献求助10
37秒前
秋风今是完成签到 ,获得积分10
38秒前
科研通AI2S应助斯文的傲珊采纳,获得10
39秒前
无为完成签到 ,获得积分10
39秒前
fuguier完成签到 ,获得积分10
39秒前
无花果应助天真的嚓茶采纳,获得10
39秒前
花再完成签到,获得积分10
40秒前
lzq完成签到 ,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734