Improving the resolution of GRACE-based water storage estimates based on machine learning downscaling schemes

缩小尺度 蒸散量 环境科学 比例(比率) 气候学 蓄水 偏最小二乘回归 随机森林 气象学 算法 计算机科学 降水 机器学习 地质学 地理 地貌学 入口 生物 地图学 生态学
作者
Wenjie Yin,Gangqiang Zhang,Shin‐Chan Han,In‐Young Yeo,Menglin Zhang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:613: 128447-128447 被引量:48
标识
DOI:10.1016/j.jhydrol.2022.128447
摘要

The applications of the Gravity Recovery and Climate Experiment (GRACE) on local scales are obstructed owing to the coarser spatial resolution of GRACE observations. Much attempts recently have been taken to improve the resolution of GRACE-based water storage estimates based on machine learning algorithms, focusing on new algorithm development. However, there are still two deficiencies in previous GRACE downscaling research, namely the selection of input variables and the scale of model construction. In this study, the partial least squares regression (PLSR) model firstly is employed to identify the representative predictors associated with GRACE observations. Then, the performance of two different downscaling schemes (namely pixel-scale and regional-scale models) are comprehensively investigated, based on a machine learning algorithm known as random forest, to enhance the resolution of GRACE-based water storage estimates to the grid resolution as small as 5 km. The downscaled results are validated against hydrological model simulations and a number of in-situ groundwater level measurements within one of most rapidly urbanized basin in China, Haihe River Basin. The PLSR model recognizes four variables (namely evapotranspiration, temperature, land surface temperature, and soil moisture) as the predominant factors, acting as the predictors of downscaling models. Starting with the GRACE observations, two kinds of pixel and regional downscaling schemes are developed. The downscaled results were consistent each other and with the original GRACE data at a broad scale with the correlation up to 0.98. It was found that there was 3.20 times deviation of the results from the model simulation in computation of groundwater depletion rates within plain areas. In-situ water level measurements highlight that the downscaling models are improved by 36.95 % and 23.25 % in correlation relative to the original GRACE data and the simulated groundwater storage anomalies, respectively. Generally, the pixel-scale model is slightly better than the regional-scale model with 69 % (171 out of 249 observation wells) of higher correlation and 53 % (131 out of 249 observation wells) of smaller root mean squared error. The high-resolution results presented in this study can lead to better understanding on regional water resources and provide quantitative information to water management considering irrigation water use and groundwater consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助masterchen采纳,获得50
刚刚
mars9758完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
芊芊完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
派提克发布了新的文献求助10
3秒前
5秒前
Jingjing123关注了科研通微信公众号
5秒前
5秒前
5秒前
5秒前
zz发布了新的文献求助10
6秒前
1111完成签到,获得积分10
7秒前
FashionBoy应助今昔采纳,获得10
7秒前
顾矜应助liushirui采纳,获得10
7秒前
小马甲应助Espoir采纳,获得10
7秒前
YT发布了新的文献求助80
9秒前
9秒前
cccc发布了新的文献求助10
10秒前
10秒前
10秒前
无极微光应助沉默采纳,获得20
11秒前
11秒前
派提克发布了新的文献求助10
11秒前
12秒前
tll发布了新的文献求助10
13秒前
14秒前
JamesPei应助平安喜乐采纳,获得10
14秒前
wanci应助zz采纳,获得10
15秒前
15秒前
16秒前
文艺梦芝完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406217
求助须知:如何正确求助?哪些是违规求助? 4524325
关于积分的说明 14097517
捐赠科研通 4438110
什么是DOI,文献DOI怎么找? 2435966
邀请新用户注册赠送积分活动 1428100
关于科研通互助平台的介绍 1406280