New morphological parameter for intracranial aneurysms and rupture risk prediction based on artificial neural networks

医学 转动惯量 动脉瘤 接收机工作特性 放射科 内科学 物理 量子力学
作者
Hyeondong Yang,Kwang‐Chun Cho,Jung‐Jae Kim,Yong Bae Kim,Je Hoon Oh
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:15 (e2): e209-e215 被引量:9
标识
DOI:10.1136/jnis-2022-019201
摘要

Numerous studies have evaluated the rupture risk of intracranial aneurysms using morphological parameters because of their good predictive capacity. However, the limitation of current morphological parameters is that they do not always allow evaluation of irregularities of intracranial aneurysms. The purpose of this study is to propose a new morphological parameter that can quantitatively describe irregularities of intracranial aneurysms and to evaluate its performance regarding rupture risk prediction.In a retrospective study, conventional morphological parameters (aspect ratio, bottleneck ratio, height-to-width ratio, volume to ostium ratio, and size ratio) and a newly proposed morphological parameter (mass moment of inertia) were calculated for 125 intracranial aneurysms (80 unruptured and 45 ruptured aneurysms). Additionally, hemodynamic parameters (wall shear stress and strain) were calculated using computational fluid dynamics and fluid-structure interaction. Artificial neural networks trained with each parameter were used for rupture risk prediction.All components of the mass moment of inertia (Ixx, Iyy, and Izz) were significantly higher in ruptured cases than in unruptured cases (p values for Ixx, Iyy, and Izz were 0.032, 0.047, and 0.039, respectively). When the conventional morphological and hemodynamic parameters as well as the mass moment of inertia were considered together, the highest performance for rupture risk prediction was obtained (sensitivity 96.3%; specificity 85.7%; area under the receiver operating characteristic curve 0.921).The mass moment of inertia would be a useful parameter for evaluating aneurysm irregularity and hence its risk of rupture. The new approach described here may help clinicians to predict the risk of aneurysm rupture more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜馨完成签到,获得积分10
刚刚
llllllb发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
可爱的函函应助喜悦晓夏采纳,获得10
2秒前
思源应助贾方硕采纳,获得10
3秒前
3秒前
科研通AI6应助HU采纳,获得10
3秒前
4秒前
4秒前
5秒前
爆米花应助MP423采纳,获得10
5秒前
深情惜梦发布了新的文献求助10
5秒前
折戟沉沙完成签到,获得积分10
6秒前
6秒前
群青发布了新的文献求助10
6秒前
木木发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
阿涂发布了新的文献求助10
7秒前
8秒前
8秒前
史元恒完成签到,获得积分10
8秒前
冰柠完成签到,获得积分10
9秒前
9秒前
9秒前
充电宝应助林俊杰采纳,获得10
9秒前
Avatar完成签到,获得积分10
11秒前
隐形霸完成签到,获得积分10
12秒前
yanliuzi发布了新的文献求助10
13秒前
14秒前
贾方硕发布了新的文献求助10
14秒前
14秒前
14秒前
淡定鱼发布了新的文献求助10
15秒前
当时明月在完成签到,获得积分0
15秒前
17秒前
RJL发布了新的文献求助10
19秒前
scige发布了新的文献求助20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5083697
求助须知:如何正确求助?哪些是违规求助? 4300704
关于积分的说明 13400248
捐赠科研通 4124826
什么是DOI,文献DOI怎么找? 2259172
邀请新用户注册赠送积分活动 1263329
关于科研通互助平台的介绍 1197395