Single-cell RNA-seq of human induced pluripotent stem cells reveals cellular heterogeneity and cell state transitions between subpopulations

诱导多能干细胞 生物 胚胎干细胞 计算生物学 遗传学 人口 基因 细胞分化 细胞生物学 社会学 人口学
作者
Quan Nguyen,Samuel W. Lukowski,Han Sheng Chiu,Anne Senabouth,Timothy J. C. Bruxner,Angelika N. Christ,Nathan J. Palpant,Joseph E. Powell
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:28 (7): 1053-1066 被引量:109
标识
DOI:10.1101/gr.223925.117
摘要

Heterogeneity of cell states represented in pluripotent cultures has not been described at the transcriptional level. Since gene expression is highly heterogeneous between cells, single-cell RNA sequencing can be used to identify how individual pluripotent cells function. Here, we present results from the analysis of single-cell RNA sequencing data from 18,787 individual WTC-CRISPRi human induced pluripotent stem cells. We developed an unsupervised clustering method and, through this, identified four subpopulations distinguishable on the basis of their pluripotent state, including a core pluripotent population (48.3%), proliferative (47.8%), early primed for differentiation (2.8%), and late primed for differentiation (1.1%). For each subpopulation, we were able to identify the genes and pathways that define differences in pluripotent cell states. Our method identified four transcriptionally distinct predictor gene sets composed of 165 unique genes that denote the specific pluripotency states; using these sets, we developed a multigenic machine learning prediction method to accurately classify single cells into each of the subpopulations. Compared against a set of established pluripotency markers, our method increases prediction accuracy by 10%, specificity by 20%, and explains a substantially larger proportion of deviance (up to threefold) from the prediction model. Finally, we developed an innovative method to predict cells transitioning between subpopulations and support our conclusions with results from two orthogonal pseudotime trajectory methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄妙完成签到,获得积分10
1秒前
ELDEN发布了新的文献求助10
2秒前
Sean完成签到,获得积分10
4秒前
kangjie123完成签到,获得积分10
4秒前
9秒前
10秒前
10秒前
科研通AI5应助CYANjane采纳,获得50
10秒前
好好吃饭柚子完成签到,获得积分20
12秒前
13秒前
到底是谁还在做牛马完成签到 ,获得积分10
13秒前
小小邓发布了新的文献求助10
14秒前
21完成签到 ,获得积分10
15秒前
LSF发布了新的文献求助10
15秒前
16秒前
ypres完成签到 ,获得积分10
17秒前
小77完成签到,获得积分10
17秒前
Akim应助xiaoyi采纳,获得10
21秒前
传统的斓完成签到,获得积分10
22秒前
23秒前
24秒前
CYANjane完成签到,获得积分10
25秒前
CipherSage应助immm采纳,获得10
26秒前
HH发布了新的文献求助30
28秒前
29秒前
CYANjane发布了新的文献求助50
30秒前
科研通AI2S应助负数采纳,获得10
30秒前
33秒前
33秒前
小五完成签到,获得积分10
34秒前
haiyan发布了新的文献求助10
37秒前
37秒前
DELI完成签到 ,获得积分10
38秒前
dr1nk完成签到 ,获得积分10
39秒前
40秒前
shyの煜完成签到 ,获得积分10
40秒前
谢朝邦完成签到 ,获得积分10
40秒前
科研通AI2S应助无私的碧菡采纳,获得10
40秒前
机智马里奥完成签到 ,获得积分10
44秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776240
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207338
捐赠科研通 3036979
什么是DOI,文献DOI怎么找? 1666499
邀请新用户注册赠送积分活动 797502
科研通“疑难数据库(出版商)”最低求助积分说明 757868