特征向量
多重性(数学)
数学
组合数学
零(语言学)
歪斜
特征多项式
多项式的
平方(代数)
斜对称矩阵
基质(化学分析)
方阵
对称矩阵
数学分析
物理
几何学
天文
量子力学
哲学
语言学
复合材料
材料科学
摘要
Given any skew-symmetric n x n matrix A , we have det ( A - λ I )= det ( A - λ I )′ = det (- A - λ I ) = (-1) n det ( A + λ I ), whence we see that the non-zero eigenvalues of A can be arranged in pairs α, - α. Since the set of n eigenvalues of A 2 is precisely the set of the squares of the eigenvalues of A , it follows that every non-zero eigenvalue of A 2 occurs with even multiplicity, so that the characteristic function ϕ(λ) = det ( A 2 - λI) of A 2 , regarded as a polynomial in λ, is a perfect square if n is even, while, if n is odd, then we may write ϕ(λ) =λ{f(λ)} 2 for a suitable polynomial f(λ).
科研通智能强力驱动
Strongly Powered by AbleSci AI