Generative machine learning for de novo drug discovery: A systematic review

计算机科学 人工智能 机器学习 可解释性 生成语法 循环神经网络 深度学习 药物发现 渲染(计算机图形) 人工神经网络 生物信息学 生物
作者
Dominic D. Martinelli
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105403-105403 被引量:89
标识
DOI:10.1016/j.compbiomed.2022.105403
摘要

Recent research on artificial intelligence indicates that machine learning algorithms can auto-generate novel drug-like molecules. Generative models have revolutionized de novo drug discovery, rendering the explorative process more efficient. Several model frameworks and input formats have been proposed to enhance the performance of intelligent algorithms in generative molecular design. In this systematic literature review of experimental articles and reviews over the last five years, machine learning models, challenges associated with computational molecule design along with proposed solutions, and molecular encoding methods are discussed. A query-based search of the PubMed, ScienceDirect, Springer, Wiley Online Library, arXiv, MDPI, bioRxiv, and IEEE Xplore databases yielded 87 studies. Twelve additional studies were identified via citation searching. Of the articles in which machine learning was implemented, six prominent algorithms were identified: long short-term memory recurrent neural networks (LSTM-RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), adversarial autoencoders (AAEs), evolutionary algorithms, and gated recurrent unit (GRU-RNNs). Furthermore, eight central challenges were designated: homogeneity of generated molecular libraries, deficient synthesizability, limited assay data, model interpretability, incapacity for multi-property optimization, incomparability, restricted molecule size, and uncertainty in model evaluation. Molecules were encoded either as strings, which were occasionally augmented using randomization, as 2D graphs, or as 3D graphs. Statistical analysis and visualization are performed to illustrate how approaches to machine learning in de novo drug design have evolved over the past five years. Finally, future opportunities and reservations are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
铲铲完成签到,获得积分10
2秒前
2秒前
搜集达人应助墨殇采纳,获得10
5秒前
5秒前
6秒前
积极问晴发布了新的文献求助30
6秒前
阿树发布了新的文献求助10
7秒前
7秒前
善学以致用应助TJJ采纳,获得10
8秒前
hansa完成签到,获得积分0
8秒前
9秒前
彭于晏应助阿树采纳,获得10
12秒前
XL神放发布了新的文献求助10
13秒前
Luffa完成签到,获得积分10
13秒前
15秒前
曾经的贞完成签到,获得积分10
17秒前
albertchan完成签到,获得积分10
17秒前
坚强的夏瑶完成签到,获得积分20
17秒前
英姑应助Phi.Wang采纳,获得10
17秒前
123完成签到,获得积分10
18秒前
纯洁完成签到,获得积分10
18秒前
星辰大海应助mmmz采纳,获得10
18秒前
UU完成签到,获得积分10
19秒前
19秒前
星辰大海应助ILBY采纳,获得10
22秒前
新念发布了新的文献求助10
23秒前
24秒前
姜灭绝完成签到,获得积分10
24秒前
1012077054完成签到,获得积分10
25秒前
zouxiang发布了新的文献求助10
26秒前
曾经的贞发布了新的文献求助20
27秒前
努力搞科研完成签到,获得积分10
27秒前
顾矜应助无情的宛儿采纳,获得10
27秒前
hyt发布了新的文献求助10
28秒前
修管子完成签到,获得积分10
29秒前
29秒前
晒太阳的鱼完成签到 ,获得积分10
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307