Automatic Detection and Counting System for Pavement Cracks Based on PCGAN and YOLO-MF

跟踪(教育) 加速度 计算机科学 人工智能 计算机视觉 财产(哲学) 面子(社会学概念) 算法 模式识别(心理学) 认识论 经典力学 物理 哲学 社会学 社会科学 教育学 心理学
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Chao Zhang,Jiaxiu Dong,Haobang Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22166-22178 被引量:101
标识
DOI:10.1109/tits.2022.3161960
摘要

The regular detection of pavement cracks is critical for life and property security. However, existing deep learning-based methods of crack detection face difficulties in terms of data acquisition and defect counting. An automatic intelligent detection and tracking system for pavement cracks is proposed. Our system is formed of a pavement crack generative adversarial network (PCGAN) and a crack detection and tracking network called YOLO-MF. First, PCGAN is used to generate realistic crack images, to address the problem of the small number of available images. Next, YOLO-MF is developed based on an improved YOLO v3 modified by an acceleration algorithm and median flow (MF) algorithm to count the number of cracks. In a counting loop, our improved YOLO v3 detects cracks and the MF algorithm tracks the cracks detected in a video. This improved algorithm achieves the best accuracy of 98.47% and F1 score of 0.958 among other algorithms, and the precision-recall curve was close to the top right. A tiny model was developed and an acceleration algorithm was applied, which improved the detection speed by factors of five and six, respectively. In on-site measurement, three cracks were detected and tracked, and the total count was correct. Finally, the system was embedded in an intelligent device consisting of a calculating module, an automated unmanned aerial vehicle, and other components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ch完成签到 ,获得积分10
刚刚
2秒前
2秒前
Aowu应助含蓄的荔枝采纳,获得10
2秒前
雪酪芋泥球完成签到 ,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
张小美发布了新的文献求助10
2秒前
3秒前
阿九完成签到,获得积分10
3秒前
3秒前
shiyan_39完成签到,获得积分10
3秒前
5秒前
5秒前
路人甲发布了新的文献求助10
5秒前
科研通AI5应助中科院饲养员采纳,获得200
5秒前
山木完成签到,获得积分10
6秒前
孔觅儿发布了新的文献求助10
7秒前
糊涂的芷天完成签到,获得积分20
7秒前
衡玉发布了新的文献求助10
7秒前
7秒前
科研通AI5应助小强采纳,获得100
8秒前
YDSG完成签到,获得积分10
8秒前
科研通AI5应助张贵虎采纳,获得10
9秒前
autobot1完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
doudou完成签到,获得积分10
10秒前
lianqing完成签到,获得积分10
10秒前
微雨完成签到,获得积分10
10秒前
dhfify完成签到,获得积分10
10秒前
旺仔完成签到,获得积分10
11秒前
彭于晏应助一一一采纳,获得10
11秒前
cistronic完成签到,获得积分10
11秒前
老实曼香发布了新的文献求助10
11秒前
Daniel完成签到,获得积分10
12秒前
12秒前
哈哈u发布了新的文献求助10
12秒前
山药蛋发布了新的文献求助10
12秒前
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816382
求助须知:如何正确求助?哪些是违规求助? 3359882
关于积分的说明 10405195
捐赠科研通 3077893
什么是DOI,文献DOI怎么找? 1690372
邀请新用户注册赠送积分活动 813754
科研通“疑难数据库(出版商)”最低求助积分说明 767819