Depression screening using a non-verbal self-association task: A machine-learning based pilot study

贝克抑郁量表 萧条(经济学) 接收机工作特性 心理学 重性抑郁障碍 临床心理学 神经影像学 机器学习 人工智能 精神科 计算机科学 焦虑 心情 宏观经济学 经济
作者
Yang S. Liu,Yipeng Song,Naomi A. Lee,Daniel M. Bennett,Katherine S Button,Andrew J. Greenshaw,Bo Cao,Jie Sui
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:310: 87-95 被引量:2
标识
DOI:10.1016/j.jad.2022.04.122
摘要

Effective screening is important to combat the raising burden of depression and opens a critical time window for early intervention. Clinical use of non-verbal depression screening is nascent, yet a promising and viable candidate to supplement verbal screening. Differential self- and emotion-processing in depression patients were previously reported by non-verbal behavioural assessments, corroborated by neuroimaging findings of distinct neuroanatomical markers. Thus non-verbal validated brain-behaviour based self-emotion-related assessment data reflect physiological differences and may support individual level screening of depression. In this pilot study (n = 84) we collected two longitudinal sessions of behavioural assessment data in a laboratory setting. Depression was assessed using Beck Depression Inventory II (BDI-II), to explore optimal screening methods with machine-learning, and to establish the validity of adapting a novel behavioural assessment focusing on self and emotions for depression screening. The best machine-learning model achieved high performance in depression screening, 10-Fold cross-validation (CV) Area Under the receiver operating characteristic Curve (AUC) of 0.90 and balanced accuracy of 0.81, using a Gradient Boosting algorithm. Prospective prediction using a model trained with session 1 data to predict session 2 depression status achieved a 10-Fold CV AUC of 0.77 and balanced accuracy of 0.66. We also identified interpretable behavioural signatures for depression patients based on the best model. The study supports the utility of using behavioural data as a viable and cost-effective solution for depression screening, with a potential wide range of applications in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
jjy发布了新的文献求助10
5秒前
清爽海白完成签到 ,获得积分10
5秒前
早起大王完成签到,获得积分10
7秒前
阿是完成签到,获得积分10
7秒前
11秒前
14秒前
sang完成签到,获得积分10
15秒前
不安的硬币完成签到,获得积分10
15秒前
17秒前
19秒前
yyyyyy完成签到 ,获得积分10
20秒前
20秒前
20秒前
22秒前
科研通AI5应助傢誠采纳,获得10
23秒前
23秒前
23秒前
24秒前
左丘冬寒完成签到,获得积分10
25秒前
25秒前
ssss完成签到 ,获得积分10
26秒前
26秒前
江峰发布了新的文献求助10
27秒前
27秒前
dustomb发布了新的文献求助10
28秒前
yyy完成签到 ,获得积分10
28秒前
empty发布了新的文献求助10
30秒前
Jasper应助顾志成采纳,获得10
33秒前
可爱的函函应助秀丽灵槐采纳,获得10
34秒前
蓝桉发布了新的文献求助10
34秒前
YP_024发布了新的文献求助30
38秒前
彭于晏应助manman采纳,获得10
38秒前
40秒前
42秒前
彩色的寄柔完成签到 ,获得积分10
42秒前
43秒前
1111完成签到,获得积分10
43秒前
KaK发布了新的文献求助10
46秒前
傢誠发布了新的文献求助10
46秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811300
求助须知:如何正确求助?哪些是违规求助? 3355715
关于积分的说明 10377349
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811700
科研通“疑难数据库(出版商)”最低求助积分说明 766762