TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure Prediction

人工智能 人工神经网络 三角学 计算机科学 水准点(测量) 机器学习 图形 采样(信号处理) 计算生物学 理论计算机科学 生物 数学 地理 几何学 大地测量学 滤波器(信号处理) 计算机视觉
作者
Wei Lu,Qifeng Wu,Jixian Zhang,Jiahua Rao,Chengtao Li,Shuangjia Zheng
标识
DOI:10.1101/2022.06.06.495043
摘要

Abstract Illuminating interactions between proteins and small drug molecules is a longstanding challenge in the field of drug discovery. Despite the importance of understanding these interactions, most previous works are limited by hand-designed scoring functions and insufficient conformation sampling. The recently-proposed graph neural network-based methods provides alternatives to predict protein-ligand complex conformation in a one-shot manner. However, these methods neglect the geometric constraints of the complex structure and weaken the role of local functional regions. As a result, they might produce unreasonable conformations for challenging targets and generalize poorly to novel proteins. In this paper, we propose Trigonometry-Aware Neural networKs for binding structure prediction, TANKBind, that builds trigonometry constraint as a vigorous inductive bias into the model and explicitly attends to all possible binding sites for each protein by segmenting the whole protein into functional blocks. We construct novel contrastive losses with local region negative sampling to jointly optimize the binding interaction and affinity. Extensive experiments show substantial performance gains in comparison to state-of-the-art physics-based and deep learning-based methods on commonly-used benchmark datasets for both binding structure and affinity predictions with variant settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后友蕊发布了新的文献求助10
1秒前
内向翰完成签到,获得积分10
1秒前
蟹蟹发布了新的文献求助10
2秒前
大模型应助jackbauer采纳,获得10
2秒前
li发布了新的文献求助10
2秒前
星辰大海应助我的法尼玛采纳,获得10
2秒前
谨慎的向南完成签到,获得积分10
3秒前
笨笨乌关注了科研通微信公众号
4秒前
4秒前
cjlu_cx发布了新的文献求助10
4秒前
科研通AI5应助颖二二采纳,获得10
4秒前
科目三应助大大彬采纳,获得10
5秒前
5秒前
lee1984612完成签到,获得积分10
5秒前
6秒前
7秒前
危机的安容完成签到,获得积分10
7秒前
7秒前
7秒前
星宿完成签到,获得积分10
9秒前
Cauchy完成签到,获得积分10
9秒前
香蕉觅云应助蟹蟹采纳,获得10
9秒前
10秒前
10秒前
喵喵7完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
可乐加糖完成签到,获得积分20
11秒前
bertha325发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
可乐加糖发布了新的文献求助10
13秒前
大个应助拼搏的松鼠采纳,获得10
14秒前
背后白梦完成签到,获得积分10
14秒前
酷波er应助高兴的香薇采纳,获得10
14秒前
14秒前
bkagyin应助灵巧的蜗牛采纳,获得10
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804782
求助须知:如何正确求助?哪些是违规求助? 3349826
关于积分的说明 10346008
捐赠科研通 3065719
什么是DOI,文献DOI怎么找? 1683256
邀请新用户注册赠送积分活动 808798
科研通“疑难数据库(出版商)”最低求助积分说明 764846