A risk model for digital breast tomosynthesis to predict breast cancer and guide clinical care

医学 乳腺癌 逻辑回归 乳腺摄影术 乳腺癌筛查 风险评估 套式病例对照研究 相对风险 假阳性悖论 乳房成像 绝对风险降低 阶段(地层学) 肿瘤科 置信区间 癌症 内科学 机器学习 计算机科学 古生物学 生物 计算机安全
作者
Mikael Eriksson,Stamatia Destounis,Kamila Czene,Andrew Zeiberg,Robert W. Day,Emily F. Conant,Kathy Schilling,Per Hall
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:14 (644) 被引量:23
标识
DOI:10.1126/scitranslmed.abn3971
摘要

Screening with digital breast tomosynthesis (DBT) improves breast cancer detection and reduces false positives. However, currently, no breast cancer risk model takes advantage of the additional information generated by DBT imaging for breast cancer risk prediction. We developed and internally validated a DBT-based short-term risk model for predicting future late-stage and interval breast cancers after negative screening exams. We included the available 805 incident breast cancers and a random sample of 5173 healthy women matched on year of study entry in a nested case-control study from 154,200 multiethnic women, aged 35 to 74, attending DBT screening in the United States between 2014 and 2019. A relative risk model was trained using elastic net logistic regression and nested cross-validation to estimate risks for using imaging features and age. An absolute risk model was developed using derived risks and U.S. incidence and competing mortality rates. Absolute risks, discrimination performance, and risk stratification were estimated in the left-out validation set. The discrimination performance of 1-year risk was 0.82 (95% CI, 0.79 to 0.85) with good calibration ( P = 0.7). Using the U.S. Preventive Service Task Force guidelines, 14% of the women were at high risk, 19.6 times higher compared to general risk. In this high-risk group, 76% of stage II and III cancers and 59% of stage 0 cancers were observed ( P < 0.01). Using mammographic features generated from DBT screens, our image-based risk prediction model could guide radiologists in selecting women for clinical care, potentially leading to earlier detection and improved prognoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助wenxu采纳,获得10
1秒前
wty发布了新的文献求助10
2秒前
2秒前
杨柳依依完成签到,获得积分10
3秒前
3秒前
3秒前
jisean发布了新的文献求助10
4秒前
田様应助老狗子采纳,获得10
4秒前
5秒前
大树先生发布了新的文献求助10
6秒前
见青山发布了新的文献求助10
7秒前
见青山发布了新的文献求助10
7秒前
7秒前
8秒前
科研通AI2S应助无敌超鲨采纳,获得10
11秒前
小二郎应助jjj采纳,获得10
11秒前
Keira_Chang完成签到,获得积分10
12秒前
12秒前
mumu完成签到,获得积分20
12秒前
13秒前
刀切面发布了新的文献求助40
13秒前
14秒前
东湖龙井完成签到,获得积分10
14秒前
张立云完成签到,获得积分10
14秒前
15秒前
Orange应助niu魔王采纳,获得10
18秒前
18秒前
Mngzi发布了新的文献求助10
19秒前
20秒前
wty发布了新的文献求助10
21秒前
不安豁给不安豁的求助进行了留言
21秒前
24秒前
25秒前
25秒前
29秒前
简单小土豆完成签到 ,获得积分10
30秒前
fddd完成签到 ,获得积分10
31秒前
天真的博发布了新的文献求助10
31秒前
31秒前
博修发布了新的文献求助30
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165855
求助须知:如何正确求助?哪些是违规求助? 3701529
关于积分的说明 11685963
捐赠科研通 3390132
什么是DOI,文献DOI怎么找? 1859244
邀请新用户注册赠送积分活动 919597
科研通“疑难数据库(出版商)”最低求助积分说明 832229