FAR-Net: Fast Anchor Refining for Arbitrary-Oriented Object Detection

计算机科学 目标检测 特征(语言学) 卷积(计算机科学) 干扰(通信) 功能(生物学) 人工智能 特征提取 模式识别(心理学) 计算机视觉 人工神经网络 计算机网络 哲学 语言学 频道(广播) 进化生物学 生物
作者
Chenwei Deng,Donglin Jing,Yuqi Han,Shuliang Wang,Hongshuo Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:20
标识
DOI:10.1109/lgrs.2022.3144513
摘要

Compared with natural images, targets in remote-sensing images are often distributed with more flexible orientation, aspect ratio, and scale. Thus, anchor-based algorithms often employ plenty of preset anchors to encode the above-mentioned attributes in object detection tasks. However, they often suffer from the following issues: 1) significant computational burden caused by dense-sampling anchors; 2) serious background interference since many anchors only cover small parts of the actual target; and 3) feature misalignment between the targets with the preset anchors due to the absence of the most discriminant features for target extraction. Therefore, in this letter, a fast anchor refining network (FAR-Net) is advocated to address the remaining issues for arbitrary-oriented object detection in the remote-sensing field. To be specific, a rotation alignment module (RAM) and balanced regression loss function (BR-loss) are carefully designed in the FAR-Net. The RAM is capable of generating high-quality anchors based on a refinement convolution and adaptively aligning the convolutional features by complying with the anchor boxes to reduce redundant calculation. The BR-loss is designed by employing a balanced loss function to prevent misaligned anchors from causing major gradient descents, thereby achieving a more stable network training procedure. Extensive experiments on public remote-sensing datasets (HRSC2016 and UCAS-AOD) demonstrate the excellent detection performance of our algorithm in comparison with numerous existing detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞳梦完成签到,获得积分10
2秒前
moyu发布了新的文献求助10
3秒前
小石完成签到,获得积分10
4秒前
研友_Lw7OvL发布了新的文献求助30
5秒前
6秒前
miao完成签到,获得积分10
8秒前
小白鼠完成签到 ,获得积分10
8秒前
科目三应助聂裕铭采纳,获得10
8秒前
9秒前
cdercder应助桃桃甜筒采纳,获得10
9秒前
小石发布了新的文献求助10
10秒前
大模型应助高兴的明轩采纳,获得10
10秒前
阿敬发布了新的文献求助10
10秒前
小科完成签到,获得积分10
10秒前
10秒前
晓宇完成签到 ,获得积分10
10秒前
Lwssss完成签到 ,获得积分10
11秒前
13秒前
从容的鲜花完成签到,获得积分20
13秒前
可乐思慕雪山茶完成签到 ,获得积分10
14秒前
俊逸的问薇完成签到 ,获得积分10
14秒前
15秒前
英姑应助aaaaarfv采纳,获得10
15秒前
YX发布了新的文献求助10
15秒前
15秒前
Nobody完成签到,获得积分10
16秒前
18秒前
nn发布了新的文献求助10
19秒前
lezbj99发布了新的文献求助10
19秒前
韩钰小宝完成签到 ,获得积分10
19秒前
12发布了新的文献求助10
19秒前
糖优优完成签到,获得积分10
19秒前
wxy完成签到,获得积分10
21秒前
李俊枫发布了新的文献求助10
22秒前
眯眯眼的谷冬完成签到 ,获得积分10
24秒前
聂裕铭发布了新的文献求助10
24秒前
25秒前
lezbj99完成签到,获得积分10
26秒前
zxc167完成签到,获得积分10
27秒前
青山完成签到,获得积分10
27秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785