微生物燃料电池
地杆菌
盐酸四环素
化学
脱硫弧菌
循环伏安法
降级(电信)
四环素
环境化学
色谱法
微生物学
电化学
核化学
细菌
有机化学
生物化学
生物
抗生素
电极
物理化学
阳极
电信
硫酸盐
生物膜
遗传学
计算机科学
作者
Guangyi Zhang,Danxin Liang,Zisheng Zhao,Jingsa Qi,Long Huang
标识
DOI:10.1016/j.envres.2021.112605
摘要
Tetracycline hydrochloride (TCH) is a typical antibiotic pollutant with high toxicity and persistence. The degradation of TCH and the generation of the associated electron mediator in a dual chamber microbial fuel cells (MFCs) were studied. The results of liquid chromatography revealed that TCH could be effectively removed (>93%) in MFCs mode. The maximum COD removal was 88.14 ± 1.47% in MFCs while it was 69.57 ± 1.36% in open circuit MFCs. According to cyclic voltammetry, the presence of the relevant redox peaks clearly suggested that the intermediates from TCH degradation could act as endogenous electron mediator. The highest power density of 120.02 ± 2.76 mW/m2 and the lowest internal resistance of 18.68 Ω were achieved in MFC with 2 mg/L of TCH. Microbial community analysis illustrated that Bacteroides, Comamonas, Clostridium_sensu_stricto, Desulfovibrio and Geobacter were enriched and played a dominant role in TCH degradation and power generation. Electrochemical active bacteria had certain tolerance to TCH and the inhibiting threshold value of TCH was below 5 mg/L. This study provided a new thinking that low concentration of TCH could produce electron mediators to improve the performance of MFC system.
科研通智能强力驱动
Strongly Powered by AbleSci AI